- PII
- S3034561825120159-1
- DOI
- 10.7868/S3034561825120159
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 12
- Pages
- 1878-1890
- Abstract
- Organic matter of cryogenic soils of the Western Siberia forest-tundra is concentrated mainly in the upper soil horizons. Fires are a powerful factor in the transformation of the soil and plant cover in northern ecosystems, often leading to an increase in the heat flow deep into the soil and can cause accelerated mineralization of plant residues of organic horizons. The aim of the study was to assess the adsorption capacity of mineral horizons of a Reductaquic Turbic Cryosols thixotropic 28 years after the wildfire and to identify parameters that influence this capacity of the soil. Measurements of the soil organic carbon and total nitrogen contents were carried out using the ECS 4024 and METEK-700 express analyzers; soil texture was measured using the laser diffraction method on the Malvern Mastersizer 3000 analyzer; and the relationships between film water potentials and contents was measured using the WP4-T dewpoint potentiometer. The studied soils did not differ in texture, which allowed us to link changes in the adsorption capacity of the soil with the changes occurring in their organic matter. The results of the studies have shown that 28 years after the wildfire, the studied soil differed significantly from its natural analogue in the total organic carbon content. The average total organic carbon content in the 0–5 cm layer of natural soil was 1.11%, and in the 5–30 cm layer – 1.07%. In the soil of the wildfire territory, the content of total organic carbon in both layers was significantly (p < 0.05) lower and amounted, on average, to 0.73 and 0.71%, respectively. The highest mineral soil layer, which is in direct contact with the overlying organogenic horizon, is characterized by a statistically significant (p < 0.05) decrease in the content of particulate organic matter and a statistically significant increase in the adsorption capacity of soils in the range of the film moisture. In terms of its adsorption properties, the upper mineral layer (0–5 cm) of the wildfire territory soil is closer to the underlying (5–30 cm) mineral layer and is significantly (p < 0.05) different from the similar layer (0–5 cm) of the natural soil.
- Keywords
- криозем глееватый общий углерод общий азот пленочная влага потенциал почвенной влаги C/N
- Date of publication
- 01.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 39
References
- 1. Воронин А.Д. Основы физики почв. М.: Изд-во Моск. ун-та, 1986. 244 с.
- 2. Глобус А.М. Физика неизотермического внутрипочвенного влагообмена. Л.: Гидрометеорологическое изд-во, 1983. 278 с.
- 3. Маслов М.Н., Маслова О.А., Копеина Е.И. Динамика общего и лабильного пулов органического углерода почв при постпирогенной сукцессии экосистем горной тундры Хибин // Почвоведение. 2020. № 3. С. 330–339. https://doi.org//10.31857/S0032180X20030041
- 4. Маслов М.Н., Маслова О.А., Поздняков Л.А., Копеина Е.И. Биологическая активность почв горно-тундровых экосистем при постпирогенном восстановлении // Почвоведение. 2018. № 6. С. 728–737. https://doi.org//10.7868/S0032180X18060096
- 5. Мергелев Н.С. Постпирогенная трансформация почв и запасов почвенного углерода в предтундровых редколесьях Колымской низменности: каскадный эффект и обратные связи // Известия РАН. Сер. Географическая. 2015. № 3. С. 129–140. https://doi.org//10.15356/0373-2444-2015-3-129-140
- 6. Назарова Т.В. Влияние содержания органического вещества на энергетическое состояние влаги в почве. Дис. ... канд. биол. наук. М., 2009. 134 с.
- 7. Смагин А.В., Садовникова Н.Б., Назарова Т.В., Кирюшина А.Б., Машина А.В., Еремина А.М. Влияние органического вещества на водоудерживающую способность почв // Почвоведение. 2004. № 3. С. 312–321.
- 8. Стариков В.В., Дымов А.А., Прокушкин А.С. Почвы постпирогенных лиственничников средней Сибири: морфология, физико-химические свойства и особенности почвенного органического вещества // Почвоведение. 2017. 8. С. 912–925. https://doi.org//10.7868/S0032180X17080111
- 9. Ходжаева А.К., Шапилович А.В., Губин С.В., Лупачев А.В. Количественная оценка минерализуемого пула органического вещества в криоземах тундр Колымской низменности // Почвоведение. 2020. № 2. С. 210–218. https://doi.org//10.1134/S0032180X20020070
- 10. Шахматова Е.Ю., Семиколенных Д.П. Постпирогенная дифференциация свойств ареносола в сосновых лесах западного Забайкалья // Природа Внутренней Азии. 2021. № 1. С. 112–120. https://doi.org//10.18101/2542-0623-2023-1-112-120
- 11. Aaltonen H., Köster K., Köster E., Berninger F., Zhou X., Karhu K., Biasi C. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality // Biogeochemistry. 2019. V. 143. P. 257–274. https://doi.org//10.1007/s10533-019-00560-x
- 12. Akin I.D., Akinleye T.O. Water vapor sorption behavior of wildfire-burnt soil // J. Geotech. Geoenv. Eng. 2021. V. 147. P. 04021115. https://doi.org/10.1061/ (ASCE)GT.1943-5606.0002648
- 13. Balashov E., Khomyakov Y., Sushko S., Rizhiya E. Content of adsorbed film water and density of oxygen-containing functional groups on surface of ageing biochar in sandy spodosol // Acta Hort. Regiotect. 2022. V. 25. P. 115–120. https://doi.org/10.2478/ahr-2022-0015
- 14. Certini G. Fire as a soil-forming factor // Ambio. 2014. V. 43. P. 191–195. https://doi.org/10.1007/s13280-013-0418-2
- 15. Chen C., Jiang Y., Sun B., Zhou H., Hallett P.D. Organic manure and lime change water vapour sorption of a red soil by altering water repellency and specific surface area // Eur. J. Soil Sci. 2022. V. 73. P. e13223. https://doi.org/10.1111/ejss.13223
- 16. Cole K.T., Hill N., Young K., Jenkins T., Hancock D., Schroeder P.A., Thompson A. Substrate quality influences organic matter accumulation in the soil silt and clay fraction // Soil. Biol. Biochem. 2016. V. 103. P. 138–148. https://doi.org/10.1016/j.soilbio.2016.08.014
- 17. Do D.D., Do H.D. A model for water adsorption in activated carbon // Carbon. 2000. V. 38. P. 767–773. https://doi.org/10.1016/S0008-6223 (99)00159-1
- 18. Glaser B., Lehmann J. Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review // Biol. Fert. Soils. 2002. V. 35. P. 219–230. https://doi.org/10.1007/s00374-002-0466-4
- 19. IUSS Working Group WRB. World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. International Union of Soil Sciences (IUSS): Vienna. Austria. 2022. 236 pp.
- 20. Jafarov E.E., Romanovsky V.E., Genet H., McGuire A.D., Marchenko S.S. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate // Envir. Res. Lett. 2013. V. 8. P. 035030. https://doi.org/10.1088/1748-9326/8/3/035030
- 21. Jauss V., Johnson M., Krull E., Daub M., Lehmann J. Pyrogenic carbon controls across a soil catena in the Pacific Northwest // Catena. 2015. V. 124. P. 53–59. https://doi.org/10.1016/j.catena.2014.09.001
- 22. Jha P., Hati K.M., Dalal R.C., Dang Y.P., Kopittke P.M., Menzies N.W. Soil carbon and nitrogen dynamics in a Vertisol following 50 years of no-tillage, crop stubble retention and nitrogen fertilization // Geod. 2020. V. 358. P. 113996. https://doi.org/10.1016/j.geoderma.2019.113996
- 23. Jones A., Stolbovoy V., Tarnocai C., Broll G., Spaargaren O., Montanarella L. (Eds.) Soil Atlas of the Northern Circumpolar Region. European Commission. Luxembourg: Publications Office of the European Union, 2010. 144 p.
- 24. Heim R.J., Yurtaev A., Bucharova A., Heim W., Kutskir V., Knorr K.-H., Lampei C., Pechkin A., Schilling D., Sulkarnaev F., Hözel N. Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks // Biogeosci. 2022. V. 19. P. 2729–2740. https://doi.org/10.5194/bg-19-2729-2022
- 25. Kettler T.A., Doran J.W., Gilbert T.L. Simplified method for soil particle-size determination to accompany soil-quality analyses // Soil Sci. Soc. Am. J. 2001. V. 65. P. 849–852. https://doi.org/10.2136/sssaj2001.653849x
- 26. Khorshidi M., Lu N. Determination of cation exchange capacity from soil water retention curve // J. Engin. Mech. 2017. V. 143. P. 04017023. https://doi.org/10.1061/ (ASCE)EM.1943-7889.0001220
- 27. Li X., Sun L., Han Y. Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review // Permafr. and Periglac. Proc. 2024. V. 35. P. 493–503. https://doi.org/10.1002/ppp.2247
- 28. Lupachev A., Abakumov E., Gubin S. The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in cryosols of the Kolyma Lowland (North Yakutia, Russia) // Geosciences. 2017. V. 7. P. 24. https://doi.org/10.3390/geosciences7020024
- 29. Nguyen V.T., Horikawa T., Do D.D., Nicholson D. Water as a potential molecular probe for functional groups on carbon surfaces // Carbon. 2014. V. 67. P. 72–78. https://doi.org/10.1016/j.carbon.2013.09.057
- 30. O’Donnell J.A., Harden J.W., McGuire A.D., Kanevskiy M.Z., Jorgenson M.T., Xu X. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss // Glob. Chang. Biol. 2011. V. 17. P. 1461–1474. https://doi.org/10.1111/j.1365-2486.2010.02358.x
- 31. Prater I., Zubrzycki S., Buegger F., Zoor-Füllgraff L.C., Angst G., Dannenmann M., Mueller C.W. From fibrous plant residues to mineral-associated organic carbon—the fate of organic matter in Arctic permafrost soils // Biogeosciences. 2020. V. 17. P. 3367–3383. https://doi.org/10.5194/bg-17-3367-2020
- 32. Singh B., Fang Y., Cowie B.C., Thomsen L. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars // Org. Geochem. 2014. V. 77. P. 1–10. https://doi.org/10.1016/j.orggeochem.2014.09.006
- 33. Son X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Hu K. Effect of soil organic matter on sorption of water vapor and associated hysteresis // Soil Sci. Soc. Am. J. 2023. V. 87. P. 1249–1262. https://doi.org//10.1002/saj2.20577
- 34. Song X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Hu K. Effect of soil organic matter on sorption of water vapor and associated hysteresis // Soil Sci. Soc. Am J. 2023. V. 87. P. 1249–1262. https://doi.org//10.1002/saj2.20577
- 35. Song X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Ren T. Cation exchange capacity and soil pore system play the key role in water vapour sorption // Geod. 2022. V. 424. P. 116017. https://doi.org//10.1016/j.geoderma.2022.116017
- 36. Weintraub M.N., Schimel J.P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils // Ecosyst. 2003. V. 6. P. 129–143. https://doi.org//10.1007/s10021-002-0124-6
- 37. Yurtaev A., Moskovchenko D., Sedov S., Sharapov D., Shvartseva O. The impact of fires on the fractional composition of iron and carbon dynamics in the cryogenic soils of the Forest–Tundra of Western Siberia under changing climate conditions // Soil Systems. 2025. V. 9. P. 15. https://doi.org//10.3390/solisystems9010015