RAS BiologyПочвоведение Eurasian Soil Science

  • ISSN (Print) 0032-180X
  • ISSN (Online) 3034-5618

Ecotoxicological Assessment of Coffee Waste as a Component of Organic Fertilizers

PII
S3034561825110142-1
DOI
10.7868/S3034561825110142
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 11
Pages
1567-1579
Abstract
About 6 million tons of coffee waste are generated annually in the world, which in most cases are not recycled, accumulate and have a negative impact on the environment due to the content of caffeine, tannin, polyphenols and other toxic substances. The use of coffee waste as organic fertilizer is limited by the presence of the same toxic compounds. A possible approach to reducing the negative impact of coffee waste on soil biota may be their composting, including vermiculture. This study conducted an ecotoxicological assessment of coffee waste before and after vermicomposting using earthworms Eisenia andrei. Initial waste showed high toxicity: coffee grounds were classified as hazard class II, coffee chaff − as hazard class III. After vermicomposting, toxicity decreased: samples with 25−50% waste content became low hazardous (class IV), and with 100% − moderately hazardous (class III). The study confirmed that vermicomposting is an effective method of coffee waste detoxification, allowing to obtain safe organic fertilizers. Dosages of no more than 50% of waste in compost were recommended for practical application.
Keywords
кофейная шелуха кофейная гуща вермикомпостирование класс опасности утилизация отходов
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Воробьева Л.А., Лопухина О.В., Салпагарова И.А., Расторова О.Г., Андреев Д.П., Ладонин Д.В., Федорова Н.Н., Касаткина Г.А., Глебова Г.И., Рудакова Т.А. Теория и практика химического анализа почв. М.: ГЕОС, 2006. 400 с.
  2. 2. Квиткина А.К., Журавлева А.И., Дударева Д.М., Быховец С.С. Влияние соотношения углерода к азоту (С/N) на минерализацию и трансформацию лигнина: модельный подход // Экология урбанизированных территорий. 2020. № 2. С. 30–40.
  3. 3. Семенов В.М. Функции углерода в минерализации-иммобилизационном обороте азота в почве // Агрохимия. 2020. № 6. С. 78–96. Semenov V.M. Functions of Carbon in the Mineralization-Immobilization Turnover of Nitrogen in Soil. Agrochemistry. No. 6. P. 78–96. doi: 10.31857/S0002188120060101
  4. 4. Скрынникова И.Н. Методы определения окислительно-восстановительных условий в почве // Методы стационарного изучения почв. М.: Наука, 1997. 296 с.
  5. 5. Al-Yousef H.M., Amina M. Essential oil of Coffee arabica L. husks: a brilliant source of antimicrobial and antioxidant agents // Biomed Res. Allied Academies. 2018. V. 29. P. 174–180. doi: 10.4066/biomedicalresearch.29-17-867
  6. 6. Blinová L., Sirotiak M., Bartošová A., Soldán M. Review: utilization of waste from coffee production // Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2017. V. 25. P. 91–101.
  7. 7. Campos-Vega R., Loarca-Piña G., Vergara-Castañeda H.A., Oomah B.D. Spent coffee grounds: A review on current research and future prospects // Trends Food Sci Technol. 2015. V. 45. P. 24–36. doi: 10.1016/j.tifs.2015.04.012
  8. 8. Cervera-Mata A., Fernández-Arteaga A., Navarro-Alarcón M., Hinojosa D., Pastoriza S., Delgado G., Rufián-Henares J.A. Spent coffee grounds as a source of smart bio-chelates to increase Fe and Zn levels in lettuces // J. Clean Prod. 2021. V. 328. P. 129548. doi: 10.1016/j.jclepro.2021.129548
  9. 9. Cervera-Mata A., Fernández-Arteaga A., Fornasier F., Mondini C. Spent coffee grounds by-products and their influence on soil C–N dynamics // J. Environ. Manage. 2022. V. 302. P. 114075. doi: 10.1016/j.jenvman.2021.114075
  10. 10. Cervera-Mata A., Martin-García J.M., Delgado R., Sancéz-Marán M., Delgado G. Short-term effects of spent coffee grounds on the physical properties of two Mediterranean agricultural soils // Int. Agrophys. 2019. V. 33. P. 205–216. doi: 10.31545/intagr/109412
  11. 11. Cervera-Mata A., Navarro-Alarcón M., Rufián-Henares J.A., Pastoriza S., Montilla-Gomez J., Delgado G. Phytotoxicity and chelating capacity of spent coffee grounds: Two contrasting faces in its use as soil organic amendment // Sci. Total Environ. 2020. V. 717. P. 137247. doi: 10.1016/j.scitotenv.2020.137247
  12. 12. Corrêa P.C., Oliveira G., Oliveira A., Vargas-Elías G., Santos F., Baptestini F. Preservation of roasted and ground coffee during storage Part 1: Moisture content and repose angle // Revista Brasileira de Engenharia Agrícola e Ambiental. 2016. V. 20. P. 581–587. doi: 10.1590/1807-1929/agriambi.v20n6p581-587
  13. 13. Cruz R., Baptista P., Cunha S., Pereira J.A., Casal S. Carotenoids of Lettuce (Lactuca sativa L.) Grown on soil enriched with spent coffee grounds // Molecules. 2012. V. 17. P. 1535–1547. doi: 10.3390/molecules17021535
  14. 14. Domínguez J., Gómez-Brandan M. Vermicomposting: Composting with earthworms to recycle organic wastes // Manage Org Waste. IntechOpen. 2012. P. 2–39. doi: 10.5772/33874
  15. 15. Dzung N., Dzung T.T., Thi V., Khanh P. Evaluation of coffee husk compost for improving soil fertility and sustainable coffee production in rural central highland of Vietnam // Resources Environ. 2013. V. 3. P. 77–82. doi: 10.5923/j.re.2013.0304.03
  16. 16. Echeverria M.C., Nuti M. Valorisation of the residues of coffee agro-industry: Perspectives and limitations // Open Waste Manage J. 2017. V. 10. P. 13–22. doi: 10.2174/1874233101710010013
  17. 17. Edward C.A. Earthworm Ecology. Boca Raton: CRC Press LLC, 2004. 456 p. doi: 10.1201/9781420039719
  18. 18. Fernandes A.S., Mello F.V.C., Filho S.T., Carpes R.M., Honorio J.G., Marques M.R.C., Felzenszwalb I., Ferrax E.R.A. Impacts of discarded coffee waste on human and environmental health // Ecotoxicol Environ Saf. 2017. V. 141. P. 30–36. doi: 10.1016/j.ecoenv.2017.03.011
  19. 19. Gomes T., Pereira J.A., Ramalhosa E., Casal S., Baptista P. Effect of fresh and composted spent coffee grounds on lettuce growth, photosynthetic pigments and mineral composition // VII Congreso Ibérico de Agroingenieria y Ciencias Horticolas, Madrid, 26–29 August 2013, P. 1372-1376.
  20. 20. González-Moreno M.A., Gracienteparaluceta G.B., Sadaba S.M., Urdin J.Z., Dominguez E.R., Ezcurdia M.A.P., Meneses A.S. Feasibility of vermicomposting of spent coffee grounds and silverskin from coffee industries: a laboratory study // Agronomy. 2020. V. 10. P. 1125. doi: 10.3390/agronomy10081125
  21. 21. Hardgrove S.J., Livesley S.J. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth // Urb Forest Urb Green. 2016. V. 18. P. 1–8. doi: 10.1016/j.ufug.2016.02.015
  22. 22. Hechmi S., Guizani M., Kallel A., Zoghlami R., Ben Zrig E. Impact of raw and pre-treated spent coffee grounds on soil properties and plant growth: a mini-review // Clean Techn Environ Policy. 2023. Vol. 25. P. 2831–2843. doi: 10.1007/s10098-023-02544-w
  23. 23. Hoseini M., Cocco S., Casucci C., Cardelli V., Corti G. Coffee by-products derived resources. A review // Biomass Bioen. 2021. V. 148. P. 106009. doi: 10.1016/j.biombioe.2021.106009
  24. 24. Jiménez-Zamora A., Pastoriza S., Rufián-Henares J.A. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties // LWT − Food Science Technol. 2015. V. 61. P. 12–18. doi: 10.1016/j.lwt.2014.11.031
  25. 25. Kaur T. Vermicomposting: An Effective Option for Recycling Organic Wastes // Org Agriculture. IntechOpen. 2020. doi: 10.5772/intechopen.91892
  26. 26. Kovalcik A., Obruca S., Marova I. Valorization of spent coffee grounds: A review // Food Bioproducts Process. 2018. V. 110. P. 104–119. doi: 10.1016/j.fbp.2018.05.002
  27. 27. McNutt J., He Q. (Sophia). Spent coffee grounds: A review on current utilization // J Ind Eng Chem. 2019. V. 71. P. 78–88. doi: 10.1016/j.jiec.2018.11.054
  28. 28. Moore M.T., Greenway S.L., Farris J.L., Guerra B. Assessing caffeine as an emerging environmental concern using conventional approaches // Arch Environ Contam Toxicol. 2008. V. 54. P. 31–35. doi: 10.1007/s00244-007-9059-4
  29. 29. Moreira A.S.P., Nunes F.M., Domingues M.R., Coimbra M.A. Coffee melanoidins: structures, mechanisms of formation and potential health impacts // Food Funct. Royal Soc. Chem. 2012. V. 3. P. 903–915. doi: 10.1039/C2FO30048F
  30. 30. Morikawa C.K., Saigusa M. Recycling coffee and tea wastes to increase plant available Fe in alkaline soils // Plant Soil. 2008. V. 304. P. 249–255. doi: 10.1007/s11104-008-9544-x
  31. 31. Munirwan R.P., Mohd Taib A., Taha M.R., Abd Rahman R., Munirwansyah M. Utilization of coffee husk ash for soil stabilization: A systematic review // Phys Chem Earth. Parts A/B/C. 2022. V. 128. P. 103252. doi: 10.1016/j.pce.2022.103252
  32. 32. Murthy P., Naidu M. Sustainable management of coffee industry by-products and value addition—A review // Resources Conservation Recycling. 2012. Т. 66. P. 45–58. doi: 10.1016/j.resconrec.2012.06.005
  33. 33. Mussatto S.I., Machado E., Martins S., Teixeira J. Production, composition, and application of coffee and its industrial residues // Food Bioprocess Technol. 2011. V. 4. P. 661–672. doi: 10.1007/s11947-011-0565-z
  34. 34. Pérez-Burillo S., Cervera-Mata A., Fernández-Arteaga A., Pastoriza S., Rufián-Henares J.A., Delgado G. Why should we be concerned with the use of spent coffee grounds as an organic amendment of soils? A narrative review // Agronomy. 2022. V. 12. P. 2771. doi: 10.3390/agronomy12112771
  35. 35. Pigozzi M.T., Passos F.R., Mendes F.Q. Quality of Commercial Coffees: Heavy Metal and Ash Contents // J. Food Quality. 2018. 5908463. doi: 10.1155/2018/5908463
  36. 36. Ribeiro J.P., Vicente E.D., Gomes A.P., Nunes M.I., Alves C., Tarelhoet L.A.C. Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions // Environ Sci Pollut Res. 2017. V. 24. P. 15270–15277. doi: 10.1007/s11356-017-9134-y
  37. 37. Rufián-Henares J.A., de la Cueva S.P. Antimicrobial activity of coffee melanoidins—a study of their metal-chelating properties // J. Agric. Food Chem. Am. Chem. Soc. 2009. V. 57. P. 432–438. doi: 10.1021/jf8027842
  38. 38. Sanchez-Hernandez J.C., Domínguez J. Chapter 12 – Vermicompost derived from spent coffee grounds: assessing the potential for enzymatic bioremediation // Handbook of Coffee Processing By-Products / Ed. Galanakis C.M. Academic Press, 2017. P. 369–398. doi: 10.1016/B978-0-12-811290-8.00012-8
  39. 39. Santos C., Fonseca J., Aires A., Coutinho J., Trindade H. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product // Waste Manage. 2017. V. 59. P. 37–47. doi: 10.1016/j.wasman.2016.10.020
  40. 40. Silva S.A., Mendes F.Q., Reis M.R., Passos F.R., Carvalho A.M., Rocha K.R., Pinto F.G. Determination of heavy metals in the roasted and ground coffee beans and brew // AJAR. Academic J. 2017. V. 12. P. 221–228. doi: 10.5897/AJAR2016.11832
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library