RAS BiologyПочвоведение Eurasian Soil Science

  • ISSN (Print) 0032-180X
  • ISSN (Online) 3034-5618

Composition and Genesis of Polyarenes in Soils of Various Aged Durnt Areas in the Baikal Nature Reserve

PII
10.31857/S0032180X24070049-1
DOI
10.31857/S0032180X24070049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 7
Pages
968-982
Abstract
The article presents data on the content of eleven polycyclic aromatic hydrocarbons (PAHs) in soils under burnt areas of various ages, single and repeated, in the taiga landscapes of the middle mountains of the Khamar-Daban ridge. Morphological features of soils inherited from the fire were identified, such as: layers of coals (pyr), ashes (Cpyr), charred forest litter (Opyr) and pyrogenic humus horizon (Apyr). The post-fire variability of the soil cover, formed due to the presence of areas inside the burnt area with six degrees of burning of forest litter material, is characterised. A decrease in the content of PAHs has been shown with an increase in the intensity of the fire, as well as in the case of repeated fire on the already burnt area. Background soils have a higher content of PAHs compared to 42-year-old burnt areas and to areas of intense burning in one-year-old burnt areas. By factor analysis, four groups of PAHs were identified, differing in origin: polyarenes of pyrogenic autochthonous origin, formed in situ – naphthalene, tetraphene, pyrene, chrysene, anthracene, naphthalene, and to a lesser extent benzo(a)pyrene, and benzo(ghi)perylene; a group of polyarenes of pyrogenic allochthonous origin that accumulate in soils due to atmospheric transport of ash – benzo(a)pyrene and benzo(ghi)perylene; a group of polyarenes of biochemical origin – fluorene and biphenyl; polyarenes of biochemical and petrogenic origin, accumulating at the depth of the soil – phenanthrene.
Keywords
лесные пожары повторные гари полициклические ароматические углеводороды пирогенные сукцессии дерново-подбуры Albic Skeletic Podzols
Date of publication
15.07.2024
Year of publication
2024
Number of purchasers
0
Views
44

References

  1. 1. Алексеева Т.А., Теплицкая Т.А. Спектрофлуориметрические методы анализа полициклических ароматических углеводородов в природных и техногенных средах. Л.: Гидрометеоиздат, 1981. 215 с.
  2. 2. Габов Д.Н., Безносиков В.А., Кондратенок Б.М. Полициклические ароматические углеводороды в подзолистых и торфянисто-подзолисто-глееватых почвах фоновых ландшафтов // Почвоведение. 2007. № 3. С. 282–291.
  3. 3. Гамова Н.С,. Фаронова Е.А., Коротков Ю.Н., Кошовский Т.С., Язрикова Т.Е. Ранние стадии пирогенной сукцессии в пихтовых лесах Южного Прибайкалья (Байкальский заповедник) // Экосистемы: экология и динамика. 2023. Т. 7. № 2. С. 88–112.
  4. 4. Геннадиев А.Н. Пиковский Ю.И., Цибарт А.С., Смирнова М.А. Углеводороды в почвах: происхождение, состав, поведение (обзор) // Почвоведение. 2015. № 10. С. 1195–1209.
  5. 5. Гонгальский К.Б. Лесные пожары как фактор формирования сообществ почвенных животных // Журнал общей биологии. 2006. Т. 67. № 2. С. 127–138.
  6. 6. Жидкин А.П., Геннадиев А.Н., Кошовский Т.С. Поступление и поведение полициклических ароматических углеводородов в пахотных, залежных и лесных почвах таежной зоны (Тверская область) // Почвоведение. 2017. № 3. С. 311–320.
  7. 7. Иванов В.А., Иванова Г.А. Пожары от гроз в лесах Сибири. Новосибирск: Наука, 2010. 164 с.
  8. 8. Иванова Г.А. Зонально-экологические особенности лесных пожаров в сосняках Средней Сибири. Автореф. дис. … докт. биол. наук. Красноярск, 2005. 42 с.
  9. 9. Картушин В.М. Агроклиматические ресурсы юга Восточной Сибири (пояснительный текст к серии агроклиматических карт Иркутской, Читинской областей и Бурятской АССР). Иркутск, ВСКнИ, 1969. 100 с.
  10. 10. Кошовский Т.С., Геннадиев А.Н., Гамова Н.С., Язрикова Т.Е. Послепожарное состояние таежных почв хребта Хамар-Дабан (Прибайкалье) // Почвоведение. 2022. № 9. С. 1098–1111.
  11. 11. Краснопеева А.А., Пузанова Т.А. Геохимический углеводородный фон в почвах южной тайги // Вестник Моск. ун-та. Сер. 5, география. 2012. № 3. С. 33–40.
  12. 12. Ладейщиков Н.П., Филиппов А.Н., Зедгенидзе Е.П., Оболкин В.А., Резникова С.А. Осадки и режим увлажнения. Структура и ресурсы климата Байкала и сопредельных пространств. Новосибирск: Наука, 1977. С. 98–125.
  13. 13. Моложников В.Н. Растительность Прибайкалья. Saarbrücken: LAP Lambert Academic Publishing, 2014. 612 с.
  14. 14. Пиковский Ю.И., Смирнова М.А., Геннадиев А.Н., Завгородняя Ю.А., Жидкин А.П., Ковач Р.Г., Кошовский Т.С. Параметры нативного углеводородного состояния почв различных биоклиматических зон // Почвоведение. 2019. № 11. С. 1307–1321.
  15. 15. Предбайкалье и Забайкалье. М.: Наука,1965. 492 с.
  16. 16. Цибарт А.С., Геннадиев А.Н. Влияние пожаров на свойства лесных почв Приамурья (Норский заповедник) // Почвоведение. 2008. № 7. С. 783–792.
  17. 17. Чернянский С.С., Волосатова Ю.В., Краснопеева А.А. Особенности формирования аномалий полиароматических углеводородов в почвенном покрове // Вестник Моск. ун-та. Сер. 5, география. 2007. № 2. С. 31–37.
  18. 18. Atanassova I., Brümmer G.W. Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe // Geoderma. 2004. V. 120. № 1–2. P. 27–34. https://doi.org/10.1016/j.geoderma.2003.08.007
  19. 19. Certini G. Fire as a soil-forming factor //Ambio. 2014. V. 43. № 2. P. 191–195. https://doi.org/10.1007/s13280-013-0418-2
  20. 20. Chen H., Chow A.T., Li X.W., Ni H.G., Dahlgren R., Zeng H., Wang J.J. Wildfire burn intensity affects the quantity and speciation of polycyclic aromatic hydrocarbons in soils //ACS Earth Space Chem. 2018. V. 2. № 12. P. 1262–1270. https://doi.org/10.1021/acsearthspacechem.8b00101
  21. 21. Choi S.D. Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire // Sci. Total Environ. 2014. V. 470. P. 1441–1449. https://doi.org/10.1016/j.scitotenv.2013.07.100
  22. 22. Chunhui W., Shaohua W., Shenglu Z., Yaxing S., Jing S. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review // Pedosphere. 2017. V. 27. № 1. P. 17–26. https://doi.org/10.1016/S1002–0160 (17)60293–5
  23. 23. Devi P., Saroha A.K. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge // Bioresource Technology. 2015. V. 192. P. 312–320. https://doi.org/10.1016/j.biortech.2015.05.084
  24. 24. Du J., Jing C. Anthropogenic PAHs in lake sediments: a literature review (2002–2018) // Environ. Sci.: Processes Impacts. 2018. V. 20. № 12. P. 1649–1666.
  25. 25. Dymov A.A. Startsev V.V., Milanovsky E.Y., Valdes-Korovkin I.A., Farkhodov Y.R., Yudina A.V., Donnerhack O., Guggenberger G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia) // Geoderma. 2021. V. 404. P. 115278.
  26. 26. Edwards N.T. Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment a review // J. Environ. Quality. 1983. V. 12. № 4. P. 427–441. https://doi.org/10.2134/jeq1983.00472425001200040001x
  27. 27. Gao P., Li H., Wilson C.P., Townsend T.G., Xiang P., Liu Y., Ma L.Q. Source identification of PAHs in soils based on stable carbon isotopic signatures // Critical Rev. Environ. Sci. Technol. 2018. V. 48. № 13–15. P. 923–948. https://doi.org/10.1080/10643389.2018.1495983
  28. 28. Gorshkov A.G., Izosimova O.N., Kustova O.V., Marinaite I.I., Galachyants Y.P., Sinyukovich V.N., Khodzher T.V. Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia) // Water. 2021. V. 13. № 19. P. 2636.
  29. 29. Guo Y., Wu K., Huo X., Xu X. International perspectives: sources, distribution, and toxicity of polycyclic aromatic hydrocarbons // J. Environ. Health. 2011. V. 73. № 9. P. 22–25.
  30. 30. Kim E.J., Choi S.D., Chang Y.S. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea // Environ. Sci. Poll. Res. 2011. V. 18. P. 1508–1517. https://doi.org/10.1007/s11356-011-0515-3
  31. 31. Kim E.J., Oh J.E., Chang Y.S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil // Sci. Total Environ. 2003. V. 311. № 1–3. P. 177–189. https://doi.org/10.1016/S0048-9697 (03)00095-0
  32. 32. Makkonen U., Hellén H., Anttila P., Ferm M. Size distribution and chemical composition of airborne particles in south–eastern Finland during different seasons and wildfire episodes in 2006 // Sci. Total Environ. 2010. V. 408. № 3. P. 644–651. https://doi.org/10.1016/j.scitotenv.2009.10.050
  33. 33. Nam J.J., Thomas G.O., Jaward F.M., Steinnes E., Gustafsson O., Jones K.C. PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter // Chemosphere. 2008. V. 70. № 9. P. 1596–1602. https://doi.org/10.1016/j.chemosphere.2007.08.010
  34. 34. Nelson A.R., Narrowe A.B., Rhoades C.C., Fegel T.S., Daly R.A., Roth H.K., et al. Wildfire–dependent changes in soil microbiome diversity and function // Nature microbiology. 2022. V. 7. № 9. P. 1419–1430.
  35. 35. Simon E., Choi S.D., Park M.K. Understanding the fate of polycyclic aromatic hydrocarbons at a forest fire site using a conceptual model based on field monitoring // J. Hazardous Mater. 2016. V. 317. P. 632–639. https://doi.org/10.1016/j.jhazmat.2016.06.030
  36. 36. Tobiszewski M., Namieśnik J. PAH diagnostic ratios for the identification of pollution emission sources // Environ. Poll. 2012. V. 162. P. 110–119. https://doi.org/10.1016/j.envpol.2011.10.025
  37. 37. Tsibart A., Gennadiev A., Koshovskii T., Watts A. Polycyclic aromatic hydrocarbons in post–fire soils of drained peatlands in Western Meshchera (Moscow region, Russia) // Solid Earth. 2014. V. 5. № 2. P. 1305–1317.
  38. 38. Vergnoux A., Malleret L., Asia L., Doumenq P., Theraulaz F. Impact of forest fires on PAH level and distribution in soils // Environmental research. 2011. V. 111. № 2. P. 193–198. https://doi.org/10.1016/J.ENVRES.2010.01.008
  39. 39. Vila-Escalé M., Vegas-Vilarrúbia T., Prat N. Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire // Water Research. 2007. V. 41. № 10. P. 2171–2179 https://doi.org/10.1016/j.watres.2006.07.029
  40. 40. Wang T., Xiang K., Zeng Y., Gu H., Guan Y., Chen S. Polycyclic aromatic hydrocarbons (PAHs) in air, foliage, and litter in a subtropical forest: Spatioseasonal variations, partitioning, and litter–PAH degradation // Environ. Poll. 2023. V. 328. P. 121587. https://doi.org/10.1016/j.envpol.2023.121587
  41. 41. Wilcke W. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil a review // J. Plant Nutrition Soil Sci. 2000. V. 163. № 3. P. 229–248. https://doi.org/10.1002/1522–2624 (200006)163:3
  42. 42. Wiłkomirski B., Jabbarov Z.A., Abdrakhmanov T.A., Vokhidova M.B., Jabborov B.T., Fakhrutdinova M.F. et al. Polycyclic aromatic hydrocarbons (PAHs) in natural and anthropogenically modified soils (a review) // Biogeosystem Technique. 2018. № 5. P. 229–243. https://doi.org/10.13187/bgt.2018.2.229
  43. 43. Zhan X., Liang X., Xu G., Zhou L. Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis // Environ. Poll. 2013. V. 179. P. 294–300. https://doi.org/10.1016/j.envpol.2013.04.033
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library