- Код статьи
- S30345618S0032180X25090076-1
- DOI
- 10.7868/S3034561825090076
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 9
- Страницы
- 1188-1197
- Аннотация
- Исследовали интенсивность образования и выделения газообразного фитогормона — этилена — микробными ассоциациями в кишечнике представителей различных таксономических групп почвенной мезофауны: двупарноногих многоножек (), мокриц (), дождевых червей (норники — , почвенные — , подстилочные — , ). Изучали процесс образования этилена при развитии беспозвоночных на лиственной подстилке, гумусо-аккумулятивном горизонте урбанозема (Urbiс Technosol по WRB), а также выделение этилена из копролитов на примере . Установлено, что , развивающийся в микрокосмах, за счет питания разложенным органическим веществом увеличивает на порядок интенсивность образования этилена, а поглощающие свежую подстилку остальные животные увеличивают эмиссию этилена на 50–60%. Среди выделенных штаммов четыре изолята можно отнести к активным продуцентам этилена: sp.Ya 2, Ya 1, sp. Ya 6, Ya 1. Таким образом, кишечный тракт и свежие экскременты животных являются значимым микролокусом выделения этилена в почве.
- Ключевые слова
- бактерии продуценты этилена кишечные микроорганизмы сапротрофные животные
- Дата публикации
- 02.01.2026
- Год выхода
- 2026
- Всего подписок
- 0
- Всего просмотров
- 37
Библиография
- 1. Белимов А.А., Сафронова В.И. АЦК деаминаза и растительно-микробные взаимодействия (обзор) // Сельскохозяйственная биология. 2011. № 3 C. 23–28.
- 2. Arshad M., Frankenberger W.T. Biosynthesis of ethylene by Acremonium falciforme // Soil Biol. Biochem. 1989. V. 21. P. 633–638. https://doi.org/10.1016/0038-0717 (89)90056-4
- 3. Arshad M., Frankenberger W.T. Production and stability of ethylene in soil // Biol. Fertil. Soils. 1990. V. 10. P. 29–34.
- 4. Arshad M., Frankenberger W.T. Ethylene: Agricultural Sources and Applications. N.Y.: Kluwer Academic, Plenum Publishers, 2002. 342 p.
- 5. Ahemad M., Kiöret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. // J. King Saud University-Science. 2014. V. 26. P. 1–20. https://doi.org/10.1016/j.jksus.2013.05.001
- 6. Billington D., Golding B., Primrose S. Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi // Biochem. J. 1979. V. 182. P. 827–836. https://doi.org/10.1042/bj1820827
- 7. Chen Y., Bonkowski M., Shen Y., Griffiths B.S., Jiang Y., Wang X., Sun B. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants // Microbiome. 2020 V. 8. P. 1–17. https://doi.org/10.1186/s40168-019-0775-6
- 8. Cristescu S., De Martinis D., Te Lintel Hekkert S., Parker D., Harren F. Ethylene production by Botrytis cinerea in vitro and in tomatoes // Appl. Environ. Microbiol. 2002. V. 68. P. 5342–5350. https://doi.org/10.1128/AEM.68.11.5342-5350.2002
- 9. Chague V., Danii L.V., Sievers V., Schulze-Gronover C., Tudzynski P., Tudzynski B., Sharon A. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus–plant interactions? // Mol. Plant. Microbe. Int. 2006. V. 19. P. 33–42. https://doi.org/10.1094/MPMI-19-0033
- 10. Elsgard L. Ethylene turn-over in soil, litter and sediment // Soil Biol. Biochem. 2001. V. 33. P. 249–252. https://doi.org/10.1016/S0038-0717 (00)00122-X
- 11. Fukuda H., Ogawa T., Tanase S. Ethylene production by microorganisms // Adv. Microb. Physiol. 1993. V. 35. P. 275–306. https://doi.org/10.1016/s0065-2911 (08)60101-0
- 12. Frankenberger W.T., Arshad M. Phytohormones in Soils: Microbial Production and Function. N.Y.: CRC Press, 1995. 520 P. https://doi.org/10.1201/9780367812256
- 13. Hotiger T., Boller T. Ethylene biosynthesis in Fusarium oxysporum I. sp. tulipae proceeds from glutamate-2-oxoglutarate and requires oxygen and ferrous ions in vivo // Arch. Microbiol. 1991. V. 157. P. 18–22. https://doi.org/10.1007/BF00245329
- 14. Graham J., Linderman R. Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum I. sp. pint, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots // Can. J. Microbiol. 1980. V. 26. P. 1340–1347. https://doi.org/10.1139/m80-222
- 15. Gamalero E., Glick B.R. Bacterial Modulation of Plant Ethylene Levels // Plant physiology. 2015. V. 169. P. 13–22. https://doi.org/10.1104/pp. 15.00284
- 16. Hunt P.G., Campbell R.B., Sojka R.E., Parsons J.E., Flooding-induced soil and plant ethylene accumulation and water status response of field-grown tobacco // Plant Soil. 1981. V. 59. P. 427–439. https://doi.org/10.1007/BF02184547
- 17. Hartmans S., de Bout J.A.M., Harder W., Microbial metabolism of short-chain unsaturated hydrocarbons // FEMS Microbiol. Rev. 1989. V. 5. P. 235–264. https://doi.org/10.1016/0168-6445 (89)90034-x
- 18. Ince J., Knowles C. Ethylene formation by cell-free extracts of Escherichia coli // Arch Microbiol. 1986. V. 146. P. 151–158. https://doi.org/10.1007/BF00402343
- 19. Kepezynski J., Kepezynska E. Effect of ethylene on germination of fungal spores causing fruit rot. // Fruit Sci Rep. 1977. P. 31–35.
- 20. Kolattukudy P.E., Kim Y., Li D., Liu Z.M., Rogers L. Early molecular communication between Colletotrichum gloeosporioides and its host // Host specifically, pathology and host pathogen interaction of Colletotrichum. MN: The American Phytopathol Soc. St. Paul., 2000. P. 87–79.
- 21. Lang, V., Schneider, V., Puhlmann, H. Schengel A., ' Seitz S., 'Schack-Kirchner H., Schaffer J., Maier M. Spotting ethylene in forest soils—What influences the occurrence of the phytohormone? // Biol. Fertil. Soils. 2023.V. 59 P. 953–972. https://doi.org/10.1007/s00374-023-01763-z
- 22. Mansouri S., Bunch A. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine // J. Gen. Microbiol. 1989. V. 135. P. 2819–2827. https://doi.org/10.1099/00221287-135-11-2819.
- 23. Nagahama K., Yoshino K., Matsuoka M., Sato M., Tanase S., Ogawa T., Fukuda H. Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme // Microbiology. 1994. V. 140. P. 2309–2313. https://doi.org/10.1099/13500872-140-9-2309
- 24. North J.A., Miller A.R., Wildenthal J.A., Young S.J., Tabita F.R. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation // Proceedings of the National Academy of Sciences. 2017. V. 114. P. E10455–E10464. https://doi.org/10.1073/pnas.1711625114
- 25. Pazoui J., Pazoutova S. Ethylene is synthesized by vegetative mycelium in surface cultures of Penicillium cyclopium Westling // Can. J. Microbiol. 1989. V. 35. P. 384–387. https://doi.org/10.1139/m89-059
- 26. Primose S.B., Dilworth M.J. Ethylene production by bacteria // J. Gen. Microbiol. 1975. V. 93. № 1. P. 177–181. https://doi.org/10.1099/00221287-93-1-177
- 27. Ravanbakhsh M., Sasidharan R., Voesenek L.A.C.J., Kowalchukand G.A., Jousse A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences // Microbiome. 2018. V. 52. P. 1–10. https://doi.org/10.1186/s40168-018-0436-1
- 28. Shekhawat K., Fröhlich K., Garcia-Ramírez G.X.; Trapp M.A., Hirt H. Ethylene: A master regulator of plant–microbe interactions under abiotic stresses // Cells. 2023. V. 12. P. 1–15. https://doi.org/10.3390/cells12010031
- 29. Tzeng D.D., DeVay J.E. Ethylene production and toxicienicity of methionine and its derivatives with riboflavin in cultures of Verticillium, Fusarium, and Colletotrichum species exposed to light // Physiol. Plant. 1984. V. 62. P. 545–552. https://doi.org/10.1111/j.1399-3054.tb02797.x
- 30. Weingart H., Volksch B. Ethylene production by Pseudomonas syringae pathovars in vitro and in planta // Appl. Environ. Microbiol. 1997. V. 63. P. 156–161. https://doi.org/10.1128/aem.63.1.156-161.1997
- 31. Weingart H., Volksch B., Ullrich M. Comparison of ethylene production by Pseudomonas syringae and Ralstonia solanacearum // Phytopathol. 1999. V. 89. P. 360–365. https://doi.org/10.1094/PHYTO.1999.89.5.360
- 32. Yang J., Gine-Bordonaba J., Vilanova L., Teixido N., Usall J. An insight on the ethylene biosynthetic pathway of two major fruit postharvest pathogens with different host specificity: Penicillium digitatum and Penicillium expansum // Eur. J. Plant Pathology. 2017. V. 149. P. 575–585. https://doi.org/10.1007/s10658-017-1205-x
- 33. Zeehmeister-Boltenstern S., Smith K.A. Ethylene production and decomposition in soils // Biol. Fertil. Soils. 1998. V. 26. P. 354–361.
- 34. Zhang Y., Du H., Xu F., Ding Y., Gui Y., Zhang J., Xu W. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses // Plant Physiol. 2020. V. 183. P. 780–792. https://doi.org/10.1104/pp. 19.01020