RAS BiologyПочвоведение Eurasian Soil Science

  • ISSN (Print) 0032-180X
  • ISSN (Online) 3034-5618

Microbial Communities of Soil Macrofauna as a Source of Ethylene

PII
S30345618S0032180X25090076-1
DOI
10.7868/S3034561825090076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 9
Pages
1188-1197
Abstract
The intensity of formation and release of gaseous phytohormone - ethylene by microbial associations in the intestines of representatives of various taxonomic groups of soil macrofauna was studied: millipedes (), woodlice (), earthworms (anecic - , endogcic - , epigcic - , ). The process of ethylene formation by individuals of the above invertebrates during their development on leaf litter, humus-accumulative horizon of urban soil, as well as the release of ethylene from coprolites, using as an example, were studied. It was established that , absorbing decomposed organic matter, increases the intensity of ethylene formation by an order of magnitude, and other animals, absorbing fresh litter, increase ethylene emission by 50-60%. At the same time, 4 strains can be classified as active ethylene producers, these are: sp.Ya 2, Ya 1, sp. Ya 6, Ya 1. Thus, the intestinal tract and fresh excrement of animals are a significant microlocus of ethylene release in the soil.
Keywords
бактерии продуценты этилена кишечные микроорганизмы сапротрофные животные
Date of publication
02.01.2026
Year of publication
2026
Number of purchasers
0
Views
40

References

  1. 1. Белимов А.А., Сафронова В.И. АЦК деаминаза и растительно-микробные взаимодействия (обзор) // Сельскохозяйственная биология. 2011. № 3 C. 23–28.
  2. 2. Arshad M., Frankenberger W.T. Biosynthesis of ethylene by Acremonium falciforme // Soil Biol. Biochem. 1989. V. 21. P. 633–638. https://doi.org/10.1016/0038-0717 (89)90056-4
  3. 3. Arshad M., Frankenberger W.T. Production and stability of ethylene in soil // Biol. Fertil. Soils. 1990. V. 10. P. 29–34.
  4. 4. Arshad M., Frankenberger W.T. Ethylene: Agricultural Sources and Applications. N.Y.: Kluwer Academic, Plenum Publishers, 2002. 342 p.
  5. 5. Ahemad M., Kiöret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. // J. King Saud University-Science. 2014. V. 26. P. 1–20. https://doi.org/10.1016/j.jksus.2013.05.001
  6. 6. Billington D., Golding B., Primrose S. Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi // Biochem. J. 1979. V. 182. P. 827–836. https://doi.org/10.1042/bj1820827
  7. 7. Chen Y., Bonkowski M., Shen Y., Griffiths B.S., Jiang Y., Wang X., Sun B. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants // Microbiome. 2020 V. 8. P. 1–17. https://doi.org/10.1186/s40168-019-0775-6
  8. 8. Cristescu S., De Martinis D., Te Lintel Hekkert S., Parker D., Harren F. Ethylene production by Botrytis cinerea in vitro and in tomatoes // Appl. Environ. Microbiol. 2002. V. 68. P. 5342–5350. https://doi.org/10.1128/AEM.68.11.5342-5350.2002
  9. 9. Chague V., Danii L.V., Sievers V., Schulze-Gronover C., Tudzynski P., Tudzynski B., Sharon A. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus–plant interactions? // Mol. Plant. Microbe. Int. 2006. V. 19. P. 33–42. https://doi.org/10.1094/MPMI-19-0033
  10. 10. Elsgard L. Ethylene turn-over in soil, litter and sediment // Soil Biol. Biochem. 2001. V. 33. P. 249–252. https://doi.org/10.1016/S0038-0717 (00)00122-X
  11. 11. Fukuda H., Ogawa T., Tanase S. Ethylene production by microorganisms // Adv. Microb. Physiol. 1993. V. 35. P. 275–306. https://doi.org/10.1016/s0065-2911 (08)60101-0
  12. 12. Frankenberger W.T., Arshad M. Phytohormones in Soils: Microbial Production and Function. N.Y.: CRC Press, 1995. 520 P. https://doi.org/10.1201/9780367812256
  13. 13. Hotiger T., Boller T. Ethylene biosynthesis in Fusarium oxysporum I. sp. tulipae proceeds from glutamate-2-oxoglutarate and requires oxygen and ferrous ions in vivo // Arch. Microbiol. 1991. V. 157. P. 18–22. https://doi.org/10.1007/BF00245329
  14. 14. Graham J., Linderman R. Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum I. sp. pint, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots // Can. J. Microbiol. 1980. V. 26. P. 1340–1347. https://doi.org/10.1139/m80-222
  15. 15. Gamalero E., Glick B.R. Bacterial Modulation of Plant Ethylene Levels // Plant physiology. 2015. V. 169. P. 13–22. https://doi.org/10.1104/pp. 15.00284
  16. 16. Hunt P.G., Campbell R.B., Sojka R.E., Parsons J.E., Flooding-induced soil and plant ethylene accumulation and water status response of field-grown tobacco // Plant Soil. 1981. V. 59. P. 427–439. https://doi.org/10.1007/BF02184547
  17. 17. Hartmans S., de Bout J.A.M., Harder W., Microbial metabolism of short-chain unsaturated hydrocarbons // FEMS Microbiol. Rev. 1989. V. 5. P. 235–264. https://doi.org/10.1016/0168-6445 (89)90034-x
  18. 18. Ince J., Knowles C. Ethylene formation by cell-free extracts of Escherichia coli // Arch Microbiol. 1986. V. 146. P. 151–158. https://doi.org/10.1007/BF00402343
  19. 19. Kepezynski J., Kepezynska E. Effect of ethylene on germination of fungal spores causing fruit rot. // Fruit Sci Rep. 1977. P. 31–35.
  20. 20. Kolattukudy P.E., Kim Y., Li D., Liu Z.M., Rogers L. Early molecular communication between Colletotrichum gloeosporioides and its host // Host specifically, pathology and host pathogen interaction of Colletotrichum. MN: The American Phytopathol Soc. St. Paul., 2000. P. 87–79.
  21. 21. Lang, V., Schneider, V., Puhlmann, H. Schengel A., ' Seitz S., 'Schack-Kirchner H., Schaffer J., Maier M. Spotting ethylene in forest soils—What influences the occurrence of the phytohormone? // Biol. Fertil. Soils. 2023.V. 59 P. 953–972. https://doi.org/10.1007/s00374-023-01763-z
  22. 22. Mansouri S., Bunch A. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine // J. Gen. Microbiol. 1989. V. 135. P. 2819–2827. https://doi.org/10.1099/00221287-135-11-2819.
  23. 23. Nagahama K., Yoshino K., Matsuoka M., Sato M., Tanase S., Ogawa T., Fukuda H. Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme // Microbiology. 1994. V. 140. P. 2309–2313. https://doi.org/10.1099/13500872-140-9-2309
  24. 24. North J.A., Miller A.R., Wildenthal J.A., Young S.J., Tabita F.R. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation // Proceedings of the National Academy of Sciences. 2017. V. 114. P. E10455–E10464. https://doi.org/10.1073/pnas.1711625114
  25. 25. Pazoui J., Pazoutova S. Ethylene is synthesized by vegetative mycelium in surface cultures of Penicillium cyclopium Westling // Can. J. Microbiol. 1989. V. 35. P. 384–387. https://doi.org/10.1139/m89-059
  26. 26. Primose S.B., Dilworth M.J. Ethylene production by bacteria // J. Gen. Microbiol. 1975. V. 93. № 1. P. 177–181. https://doi.org/10.1099/00221287-93-1-177
  27. 27. Ravanbakhsh M., Sasidharan R., Voesenek L.A.C.J., Kowalchukand G.A., Jousse A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences // Microbiome. 2018. V. 52. P. 1–10. https://doi.org/10.1186/s40168-018-0436-1
  28. 28. Shekhawat K., Fröhlich K., Garcia-Ramírez G.X.; Trapp M.A., Hirt H. Ethylene: A master regulator of plant–microbe interactions under abiotic stresses // Cells. 2023. V. 12. P. 1–15. https://doi.org/10.3390/cells12010031
  29. 29. Tzeng D.D., DeVay J.E. Ethylene production and toxicienicity of methionine and its derivatives with riboflavin in cultures of Verticillium, Fusarium, and Colletotrichum species exposed to light // Physiol. Plant. 1984. V. 62. P. 545–552. https://doi.org/10.1111/j.1399-3054.tb02797.x
  30. 30. Weingart H., Volksch B. Ethylene production by Pseudomonas syringae pathovars in vitro and in planta // Appl. Environ. Microbiol. 1997. V. 63. P. 156–161. https://doi.org/10.1128/aem.63.1.156-161.1997
  31. 31. Weingart H., Volksch B., Ullrich M. Comparison of ethylene production by Pseudomonas syringae and Ralstonia solanacearum // Phytopathol. 1999. V. 89. P. 360–365. https://doi.org/10.1094/PHYTO.1999.89.5.360
  32. 32. Yang J., Gine-Bordonaba J., Vilanova L., Teixido N., Usall J. An insight on the ethylene biosynthetic pathway of two major fruit postharvest pathogens with different host specificity: Penicillium digitatum and Penicillium expansum // Eur. J. Plant Pathology. 2017. V. 149. P. 575–585. https://doi.org/10.1007/s10658-017-1205-x
  33. 33. Zeehmeister-Boltenstern S., Smith K.A. Ethylene production and decomposition in soils // Biol. Fertil. Soils. 1998. V. 26. P. 354–361.
  34. 34. Zhang Y., Du H., Xu F., Ding Y., Gui Y., Zhang J., Xu W. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses // Plant Physiol. 2020. V. 183. P. 780–792. https://doi.org/10.1104/pp. 19.01020
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library