RAS BiologyПочвоведение Eurasian Soil Science

  • ISSN (Print) 0032-180X
  • ISSN (Online) 3034-5618

Modelling of Long-Term C Sequestration on Arable Chernozem: Integrated Effects of Fertilization and Tillage

PII
S3034561825110113-1
DOI
10.7868/S3034561825110113
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 11
Pages
1534-1547
Abstract
Using the RothC model, we predicted the effects of tillage, fertilizer systems, and crop residues on C sequestration in the arable layer of 0–20 cm in a long-term field experiment on leached chernozem. The dynamics of SOC were traced until 2100 in three organomineral fertilizer systems compared with absolute control for moldboard tillage (MT) and conservation tillage (CT). It was shown that upon reaching an equilibrium level with an annual input of 2.9 Mg C ha, soil organic carbon stocks could be 79–83 and 81–85 Mg C ha−1 for MT and CT, respectively. The system with maximum FYM rates and crop residues incorporation reaches an equilibrium level 8–16 years earlier than the other systems for MT and 16–24 years earlier for CT, which is associated with higher stocks of C in this system at the beginning of modeling and the different quality composition of SOC. With an annual input of 4.6 Mg C ha−1, the possibility of providing 4‰ and higher annual rate of SOC increase was confirmed only in the first 20 years after an increase in C input. The fertilizer system, as a component of the history of the site, can affect C dynamics at least 40 years with a high C input and more than 75 years with an average C input on agrochernozems.
Keywords
Chernozem органическое вещество почвы сценарии изменения климата долгосрочный эксперимент связывание углерода 4 промилле
Date of publication
30.06.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Агеев В.В., Демкин В.А. Программирование урожайности. Ставрополь, 1991. 120 с.
  2. 2. Гречишкина Ю.И. Сохранение и воспроизводство плодородия черноземных почв для повышения продуктивности агроценозов Центрального Предкавказья. Дис. … докт. с./х. наук. М., 2020. 469 с.
  3. 3. Есаулко А.Н., Петрова Л.Н., Агеев В.В. Повышение эффективности применения удобрений на основе оптимизации систем удобрения в севооборотах Центрального Предкавказья (к 40-летнему юбилею стационара СтГАУ) // Плодородие. 2017. № 94. С. 8–11.
  4. 4. Левин Ф.И. Количество растительных остатков в посевах полевых культур и его определение по урожаю основной продукции // Агрохимия. 1977. № 8. С. 36–42.
  5. 5. Хусниев И.Т., Романенков В.А., Пасько С.В., Ильячев И.А. Агротехнологический потенциал управления органическим углеродом черноземов обыкновенных в зернопаропропашном севообороте // Российская сельскохозяйственная наука. 2022. № 3. С. 38–44. https://doi.org/10.31857/S2500262722030085.
  6. 6. Angers D.A., Eriksen-Hamel N.S. Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis // Soil Sci. Soc. Am. J. 2008. V. 72. P. 1370–1374. https://doi.org/10.2136/ssssaj2007.0342
  7. 7. Bolinder M.A., Crotty F., Elsen A., Frac M., Kismányoky T., Lipiec J. et al. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews // Mitigation and Adaptation Strategies for Global Change. 2020. V. 25. P. 929–952.
  8. 8. Chenu C., Angers D.A., Barré P., Derrien D., Arrouays D., Balesdent J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations // Soil Till. Res. 2019. V. 188. P. 41–52. https://doi.org/10.1016/j.still.2018.04.011
  9. 9. Du Z., Angers D.A., Ren T., Zhang Q., Li G. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis // Agriculture, Ecosystems Environ. 2017. V. 236. P. 1–11. https://doi.org/10.1016/j.agee.2016.11.007
  10. 10. FAO. Technical Specifications and Country Guidelines for Global Soil Organic Carbon Sequestration Potential Map (GSOCseq). FAO, Rome, 2020.
  11. 11. Franko U. Modeling approaches of soil organic carbon turnover within the CANDY system // Evaluation of Soil Organic Matter Models: Using Existing Long-Term Datasets. 1996. V. 38. P. 247–254.
  12. 12. Franko U., Schramm G., Rodionova V., Körschens M., Smith P., Coleman K., Romanenkov V., Shevtsova L. EuroSOMNET – a database for long-term experiments on soil organic matter in Europe // Computers and Electronics in Agriculture. 2002. V. 33. P. 233–239. https://doi.org/10.1016/S0168-1699 (02)00009-1
  13. 13. Haddaway N.R., Hedlund K., Jackson L.E., Kätterer T., Lugato E., Thomsen I.K., Jørgensen H.B., Isberg P.-E. How does tillage intensity affect soil organic carbon? A systematic review protocol // Environ Evid. 2016. V. 5. P. 1. https://doi.org/10.1186/s13750–016-0052-0
  14. 14. Haddaway N.R., Hedlund K., Jackson L.E., Kätterer T., Lugato E., Thomsen I.K., Jørgensen H. B., Isberg P.-E. How does tillage intensity affect soil organic carbon? A systematic review // Environ. Evid. 2017. V. 6. P. 30. https://doi.org/10.1186/s13750–017-0108-9
  15. 15. Heimann M., Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks // Nature. 2008. V. 451(7176). P. 289–292. https://doi.org/10.1038/nature06591
  16. 16. Hidy D., Barcza Z., Marjanović H., et al. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities // Geosci. Model Dev. 2016. V. 9. P. 4405–4437. https://doi.org/10.5194/gmd-9-4405-2016
  17. 17. Huang S., Zeng Y., Wu J., Shi Q., Pan X. Effect of crop residue retention on rice yield in China: a meta-analysis // Field Crops Research. 2013. V. 154. P. 188–194.
  18. 18. Husniev I., Romanenkov V., Minakova O., Krasilnikov P. Modelling and prediction of organic carbon dynamics in arable soils based on a 62-year field experiment in the Voronezh Region, European Russia // Agronomy. 2020. V. 10. P. 1607. https://doi.org/10.3390/agronomy10101607
  19. 19. Husniev I., Romanenkov V., Siptits S., Pavlova V., Pasko S., Yakimenko O., Krasilnikov P. Perspectives on effective long-term management of carbon stocks in chernozem under future climate conditions // Agriculture. 2023. V. 13. P. 1901. https://doi.org/10.3390/agriculture13101901
  20. 20. Jenkinson D.S., Hart P.B.S., Rayner J.H., Parry LC. Modeling the turnover of organic matter in long-term experiments // Intecol. 1987. V. 15. P. 1–8.
  21. 21. Khusniev I.T., Romanenkov V.A., Pasko S.V., Illichev I.A. Agrotechnological potential of organic carbon management in grain-fallow crop rotation on ordinary chernozems // Russ. Agricult. Sci. 2022. V. 48. P. 276–282. https://doi.org/10.3103/S1068367422040073
  22. 22. Lembaid I., Moussadek R., Mrabet R., Douaik A., Bouhaouss A. Modeling the effects of farming management practices on soil organic carbon stock under two tillage practices in a semi-arid region, Morocco // Heliyon. 2021. V. 7. https://doi.org/10.1016/j.heliyon.2020.e05889
  23. 23. Li C., Aber J., Stange F., Butterbach-Bahl K., Papen H. A model of nitrous oxide evolution driven from soil driven by rainfall events: 1. Model structure and sensitivity // J. Geophys. Res.: Atmospheres. 1992. V. 97. P. 9759–9776.
  24. 24. Lu X. A meta-analysis of the effects of crop residue return on crop yields and water use efficiency // PLoS One. 2020. V. 15. P. e0231740. https://doi.org/10.1371/journal.pone.0231740
  25. 25. Luo Z., Wang E., Sun O. J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments // Agriculture, Ecosystems Environ. 2010. V. 139. P. 224–231. https://doi.org/10.1016/j.agee.2010.08.006
  26. 26. Meurer K.H.E., Haddaway N.R., Bolinder M.A., Kätterer T. Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil – A systematic review using an ESM approach // Earth-Sci. Rev. 2018. V. 177. P. 613–622. https://doi.org/10.1016/j.earsci rev.2017.12.015
  27. 27. Parton W.J., Mosier A.R., Ojima D.S. Generalized model for N2 and N2O production from nitrification and denitification // Global Biogeochem. 1996. V. 10. P. 401–412.
  28. 28. Pavlova V., Shkolnik I., Pikaleva A., Efimov S., Karachenkova A., Kattsov V. Future changes in spring wheat yield in the European Russia as inferred from a large ensemble of high-resolution climate projections // Environ. Res. Lett. 2019. V. 14. P. 034010. https://doi.org/10.1088/1748-9326/aaf8be
  29. 29. Poirier V., Angers D.A., Rochette P., Chantigny M.H., Ziadi N., Tremblay G., Fortin J. Interactive effects of tillage and mineral fertilization on soil carbon profiles // Soil Sci. Soc. Am. J. 2009. V. 73. P. 255. https://doi.org/10.2136/sssaj2008.0006
  30. 30. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M. et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments // Geoderma. 1997. V. 81. P. 153-225. https://doi.org/10.1016/S0016-7061 (97)00087-6
  31. 31. Stocker T.F., Qin D., Plattner G.-K., Tignor M.M.B., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. P. 1535. https://doi.org/10.1017/CBO9781107415324
  32. 32. Virto I., Barré P., Burlot A., Chenu C. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems // Biogeochemistry. 2012. V. 108. P. 17–26. https://doi.org/10.1007/s10533-011-9600–4
  33. 33. Young M.D., Ros G.H., de Vries W. Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis // Agriculture, Ecosystems Environ. V. 319. P. 107551.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library