RAS BiologyПочвоведение Eurasian Soil Science

  • ISSN (Print) 0032-180X
  • ISSN (Online) 3034-5618

Spatial or Temporal Variation: What is More Important to Consider When Estimating Soil Respiration Rates at Different Scales of Observation

PII
S3034561825110072-1
DOI
10.7868/S3034561825110072
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 11
Pages
1484-1493
Abstract
The data of field observations of soil respiration (SR), or CO efflux from soil, obtained over five years (2020–2024) in four regions of the European Russia (Republic of Chuvashia, Ryazan Oblast, Tula Oblast, Kursk Oblast) within the biome of broad-leaved forests and forest-steppe were analyzed. In each region, SR measurements were carried out in the same set of natural (forests, steppes) and agricultural (arable lands, hayfields, pastures) ecosystems. SR was estimated using portable infrared gas analyzers and static chamber method in 10-fold spatial replications at the peak of vegetation seasons. In the Kursk region, gas measurements were conducted in a more intensive mode (1–2 times per month) as part of year-round monitoring. The goal was to quantify the relative contributions of spatial and temporal variability of SR for different scales of observations, which allows to increase confidence in field estimates of SR for subsequent extrapolation to larger regions or forecast. Nonparametric PERMANOVA analysis of variance was used. At the scale of a year or biotope, the contribution of temporal variability (49–59.8%) to the total variance of SR significantly exceeds the contribution of spatial variability (5.4–9%). Change the spatiotemporal scale of observations to multi-year series and regional ecosystems reduces the contribution of temporal variability to 27%, and increases the contribution of spatial variability up to 23.2%. In general, at the scales considered, temporal variability appears to be more important for the overall variation of SR. This leads to the methodological recommendation to increase the frequency of assessments of intraannual dynamics of SR rather than to increase the number of measurement points in local ecosystems.
Keywords
Европейская территория России непараметрический многофакторный дисперсионный анализ эмиссия диоксида углерода из почвы Phaeozems Chernozems
Date of publication
30.06.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. Карелин Д.В., Азовский А.И., Куманяев А.С., Замолодчиков Д.Г. Значение пространственного и временного масштаба при анализе факторов эмиссии $\mathrm{CO}_2$ из почвы в лесах Валдайской возвышенности // Лесоведение. 2019. № 1. C. 29–37. https://doi.org/10.1134/S0024114819010078
  2. 2. Огуреева Г.Н., Леонова Н.Б., Микляева И.М., Бочарников М.В., Федосов В.Э., Мучник Е.Э, Урбанавичюс Г.П. и др. Биоразнообразие биомов России. Равнинные биомы. М.: ИГКЭ, 2020. 623 с.
  3. 3. Anderson M.J., Gorley R.N., Clarke K.R., PERMANOVA+ for primer: Guide to software and statistical methods. Plymouth: PRIMER-e, 2008.
  4. 4. Anderson M.J., Walsh D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? // Ecol. Monogr. 2013. V. 83. P. 557–574. https://doi.org/10.1890/12-2010.1
  5. 5. Bond‐Lamberty B., Ballantyne A., Berryman E., Fluet‐Chouinard E., Jian J., Morris K.A., Rey A., Vargas R. Twenty years of progress, challenges, and opportunities in measuring and understanding soil respiration // J. Geophys. Res. G: Biogeosciences. 2024. V. 129. P. e2023JG007637. https://doi.org/10.1029/2023JG007637
  6. 6. Bond–Lamberty B., Thomson A. Temperature associated increases in the global soil respiration record // Nature. 2010. V. 464. P. 579–582. https://doi.org/10.1038/nature08930
  7. 7. Hashimoto S., Carvalhais N., Ito A., Migliavacca M., Nishina K., Reichstein M. Global spatiotemporal distribution of soil respiration modeled using a global database // Biogeosciences. 2015. V. 12. P. 4121–4132. https://doi.org/10.5194/bg-12-4121-2015
  8. 8. Hashimoto S., Ito A., Nishina K. Divergent data-driven estimates of global soil respiration // Commun. Earth Environ. 2023. V. 4. P. 460. https://doi.org/10.1038/s43247-023-01136-2
  9. 9. Huang N., Wang L., Song X.-P., Black T.A., Jassal R.S., Myneni R.B., Wu C., Wang L., Song W., Ji D., Yu S., Niu Z. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover // Sci. Advanc. 2020. V. 6. P. eabb8508. https://doi.org/10.1126/sciadv.abb8508
  10. 10. Jiang J., Feng L., Hu J., Liu H., Zhu C., Chen B., Chen T. Global soil respiration predictions with associated uncertainties from different spatio-temporal data subsets // Ecol. Inform. 2024. V. 82. P. 102777. https://doi.org/10.1016/j.ecoinf.2024.102777
  11. 11. Karelin D.V., Zolotukhin A.N., Ryzhkov O.V., Lunin V.N., Zamolodchikov D.G., Sukhoveeva O.E. The use of long-term soil respiration measurements for calculating the net carbon balance in ecosystems of the central chernozemic region // Eurasian Soil Science. 2024. V. 57. P. 1638–1649. https://doi.org/10.1134/S1064229324601318
  12. 12. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review // Soil Biol. Biochem. 2015. V. 83. P. 184–199. https://doi.org/10.1016/j.soilbio.2015.01.025.
  13. 13. Lankreijer H., Janssens I., Buchmann N., Longdoz B., Epron D., Dore S. Measurement of soil respiration, in: Kröner, F., Valentini, R. (Eds.). Ecological Studies. 2003. 163 Fluxes in Carbon, Water and Energy of European Forests. Berlin: Springer-Verlag, P. 37–54. https://doi.org/10.1007/978-3-662-05171-9_3
  14. 14. Lei J., Guo X., Zeng Y., Zhou J., Gao Q., Yang Y. Temporal changes in global soil respiration since 1987 // Nature Comm. 2021. V. 12. P. 403. https://doi.org/10.1038/s41467-020-20616-z
  15. 15. Leon E., Vargas R., Bullock S., Lopez E., Panosso A.R., La Scala N. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem // Soil Biol. Biochem. 2014. V. 77. P. 12–21. https://doi.org/10.1016/j.soilbio.2014.05.029.
  16. 16. Martin J.G., Bolstad P.V. Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the landscape // Soil Biol. Biochem. 2009. V. 41. P. 530–543. https://doi.org/10.1016/j.soilbio.2008.12.012
  17. 17. Niu S., Chen W., Liáng L.L., Sierra C.A., Xia J., Wang S., Heskel M. et al. Temperature responses of ecosystem respiration // Nat. Rev. Earth Environ. 2024. V. 5. P. 559–571. https://doi.org/10.1038/s43017-024-00569-3
  18. 18. Sukhoveeva O., Karelin D., Lebedeva T., Pochikalov A., Ryzhkov O., Suvorov G., Zolotukhin A. Greenhouse gases fluxes and carbon cycle in agroecosystems under humid continental climate conditions // Agriculture, Ecosyst. Environ. 2023. V. 352. P. 108502. https://doi.org/10.1016/j.agee.2023.108502
  19. 19. Wang X., Ren T. Spatial and temporal variability of soil respiration between soybean crop rows as measured continuously over a growing season // Sustainability. 2017. V. 9. P. 436. https://doi.org/10.3390/su9030436
  20. 20. Yao Y., Ciais P., Viovy N., Li W., Cresto-Aleina F., Yang H., Joetzjer E., Bond-Lamberty B. A data- driven global soil heterotrophic respiration dataset and the drivers of its inter-annual variability // Glob. Biogeochem. Cycles. 2021. V. 35. P. e2020GB006918. https://doi.org/10.1029/2020GB006918
  21. 21. Yu J.C., Chiang P.N., Lai Y.J. Seasonal and spatial variation in soil respiration in afforested sugarcane fields on Entisols, Taiwan // Geoderma Reg. 2021. V. 26. P. e00421. https://doi.org/10.1016/j.geodrs.2021.e00421
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library