RAS BiologyПочвоведение Eurasian Soil Science

  • ISSN (Print) 0032-180X
  • ISSN (Online) 3034-5618

Physiological characteristics of culturable prokaryotic communities of fumarole fields in the permafrost zone

PII
S3034561825080065-1
DOI
10.7868/S3034561825080065
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 8
Pages
1069-1082
Abstract
The physiology and taxonomic composition of prokaryotic communities of various volcanogenic deposits were studied. Samples of fumarole and pyroclastic deposits, as well as primitive soils (Leptic Cryosols) were collected in such poorly studied areas as fumarole fields on the summits of volcanoes in Kamchatka, the Caucasus, Japan, and cinder fields on the slopes of a volcanic structure in Antarctica. In this work, a microbiological characterization of cultured aerobic heterotrophic bacteria from the fumarole field of the Hertz crater on the summit of Ushkovsky volcano (Russia, Kamchatka) was performed for the first time. A collection of isolates was created, including 105 strains of aerobic heterotrophic bacteria representatives of Bacillus, Cupriavidus, Labedella, Microbacterium, Paenibacillus, Peribacillus, Plantibacter, Pseudomonas, Staphylococcus genus. Also, for the first time, an analysis of the physiological characteristics of the isolated strains was performed, such as temperature conditions of cultivation, pH of the medium, and NaCl concentration. The study found that tolerance to two or more stress factors was characteristic of 57.1% of the isolated strains, and tolerance to all three factors was characteristic of 24.8% of the isolated strains.
Keywords
вулканы полиэкстремотолеранты метаболизм бактериальные сообщества устойчивость
Date of publication
15.08.2025
Year of publication
2025
Number of purchasers
0
Views
56

References

  1. 1. Караевская Е.С., Демидов Н.Э., Шмелев Д.Г., Ривкина Е. М., Булат С. А. Изучение бактериальных сообществ многолетнемерзлых пород оазисов Антарктиды методами культивирования // Проблемы Арктики и Антарктики. 2017. № 2. С. 27–42. https://doi.org/10.30758/0555-2648-2017-0-2-27-42
  2. 2. Растительный покров вулканических плато Центральной Камчатки (Ключевская группа вулканов) // Под ред. Нешатаевой В.Ю. М.: Товарищество научных изданий КМК, 2014. 461 с.
  3. 3. Федотов С. А., Иванов Б.В., Двигало В.Н., Кирсанов И.Т., Муравьев Я.Д., Овсянников А.А., Разина А.А. и др. Деятельность вулканов Камчатки и Курильских островов в 1984 г. // Вулканология и сейсмология. 1985. № 5. С. 3–23.
  4. 4. Afouda P., Dubourg G., Cadoret F., Fournier P.E., Raoult D. ‘Bacillus massiliglaciei’, a new bacterial species isolated from Siberian permafrost // New Microbes and New Infections. 2016. V. 15. P. 92–93. https://doi.org/10.1016/j.nmni.2016.11.020
  5. 5. Alexandrino M., Macías F., Costa R., Gomes N.C., Canário A.V., Costa M.C. A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance // J. Hazardous Matre. 2011. V. 187. P. 362–370. https://doi.org/10.1016/j.jhazmat.2011.01.035
  6. 6. Behrendt U., Ulrich A., Schumann P., Naumann D., Suzuki K.I. Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov // Int. j. Systematic Evolutionary Microbiol. 2002. V. 52. P. 1441–1454. https://doi.org/10.1099/00207713-52-5-1441
  7. 7. Belov A.A., Cheptsov V.S., Vorobyova E.A. Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics // AIMS Microbiol. 2018. V. 4. P. 685. https://doi.org/10.3934/microbiol.2018.4.685
  8. 8. Bendia A.G., Araujo G.G., Pulschen A.A., Contro B., Duarte R.T., Rodrigues F., Pellizari V.H. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica // Extremophiles. 2018. V. 22. P. 917–929. https://doi.org/10.1007/s00792-018-1048-1
  9. 9. Blanco Y., Prieto-Ballesteros O., Gómez M.J., Moreno-Paz M., García-Villadangos M., Rodríguez-Manfredi J.A., Parro V. Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica) // Environ.l Microbiol. 2012. V. 14. P. 2495–2510. https://doi.org/10.1111/j.1462-2920.2012.02767.x
  10. 10. Borsodi A.K., Micsinai A., Rusznyák A., Vladár P., Kovacs G., Toth E.M., Marialigeti K. Diversity of alkaliphilic and alkalitolerant bacteria cultivated from decomposing reed rhizomes in a Hungarian soda lake // Microbial. Ecol. 2005. V. 50. P. 9–18. https://doi.org/10.1007/s00248-004-0063-1
  11. 11. Burkert A., Douglas T.A., Waldrop M.P., Mackelprang R. Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence // Appl. Environ. Microbiol. 2019. V. 85. P. 2. https://doi.org/10.1128/AEM.02646-18
  12. 12. Cheptsov V.S., Vorobyova E.A., Osipov G.A., Manucharova N.A., Lubov M.P., Gorlenko M.V., Lomasov V.N. Microbial activity in Martian analog soils after ionizing radiation: Implications for the preservation of subsurface life on Mars // Aims Microbiol. 2018. V. 4. P. 541. https://doi.org/10.3934/microbiol.2018.3.541
  13. 13. Cherif A., Tsiamis G., Compant S., Borin S. BIODESERT: exploring and exploiting the microbial resource of hot and cold deserts // BioMed Res. Int. 2015. V. 2015. P. 1–2. https://doi.org/10.1155/2015/289457
  14. 14. Choi J.Y., Lee P.C. Psychrobacillus glaciei sp. nov., a psychrotolerant species isolated from an Antarctic iceberg // Int. J. Systematic Evolutionary Microbiol. 2020. V. 70. P. 1947–1952. https://doi.org/10.1099/ijsem.0.003998
  15. 15. Cockell C.S., Harrison J.P., Stevens A.H., Payler S.J., Hughes S.S., Kobs Nawotniak S.E., Lim D.S. A low-diversity microbiota inhabits extreme terrestrial basaltic terrains and their fumaroles: implications for the exploration of Mars // Astrobiology. 2019. V. 19. P. 284–299. https://doi.org/10.1089/ast.2018.1870
  16. 16. Da Silva M.B.F., da Mota F.F., Jurelevicius D., de Carvalho Azevedo V.A., da Costa M.M., Góes-Neto A., Seldin L. Genomic analyses of a novel bioemulsifier-producing Psychrobacillus strain isolated from soil of King George Island, Antarctica // Polar Biol. 2022. V. 45. P. 691–701. https://doi.org/10.1007/s00300-022-03028-1
  17. 17. Daussin A., Vannier P., Ménager M., Daboussy L., Šantl-Temkiv T., Cockell C., Marteinsson V. Comparison of atmospheric and lithospheric culturable bacterial communities from two dissimilar active volcanic sites, surtsey island and fimmvörðuháls mountain in Iceland // Microorganisms. 2023. V. 11. P. 665. https://doi.org/10.3390/microorganisms11030665
  18. 18. Dziurzynski M., Gorecki A., Pawlowska J., Istel L., Decewicz P., Golec P., Dziewit L. Revealing the diversity of bacteria and fungi in the active layer of permafrost at Spitsbergen Island (Arctic)–combining classical microbiology and metabarcoding for ecological and bioprospecting exploration // Sci. Total Environ. 2023. V. 856. https://doi.org/10.1016/j.scitotenv.2022.159072
  19. 19. Fagorzi C., Del Duca S., Venturi S., Chiellini C., Bacci G., Fani R., Tassi F. Bacterial communities from extreme environments: Vulcano Island // Diversity. 2019. V. 11. P. 140. https://doi.org/10.3390/d11080140
  20. 20. Gilichinsky D., Abakumov E., Abramov A., Fyodorov-Davydov D., Goryachkin S., Lupachev A., Zazovskaya E. Soils of mid and low antarctic: diversity, geography, temperature regime // Proceedings 19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, 2010. V. 16. P. 32–35.
  21. 21. Gilichinsky D., Vishnivetskaya T., Petrova M., Spirina E., Mamykin V., Rivkina E. Bacteria in permafrost // Psychrophiles: from biodiversity to biotechnology. Berlin: Springer, 2008. P. 83–102. https://doi.org/10.1007/978-3-540-74335-4_6
  22. 22. Hansen A.A., Herbert R.A., Mikkelsen K., Jensen L.L., Kristoffersen T., Tiedje J.M., Finster K.W. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway // Environ. Microbiol. 2007. V. 9. P. 2870–2884. https://doi.org/10.1111/j.1462-2920.2007.01403.x
  23. 23. Itcus C., Pascu M.D., Lavin P., Perşoiu A., Iancu L., Purcarea C. Bacterial and archaeal community structures in perennial cave ice // Scientific Rep. 2018. V. 8. P. 1–14. https://doi.org/10.1038/s41598-018-34106-2
  24. 24. Katayama T., Tanaka M., Moriizumi J., Nakamura T., Brouchkov A., Douglas T.A., Asano K. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years // Appl. Environ. Microbiol. 2007. V. 73. P. 2360–2363. https://doi.org/10.1128/AEM.01715-06
  25. 25. Lane D.J. 16S/23S rRNA Sequencing // Nucleic Acid Techniques in Bacterial Systematic. 1991. P. 115–175.
  26. 26. Lange-Enyedi N.T., Németh P., Borsodi A.K., Spötl C., Makk J. Calcium carbonate precipitating extremophilic bacteria in an Alpine ice cave // Scientific Rep. 2024. V. 14. P. 2710. https://doi.org/10.1038/s41598-024-53131-y
  27. 27. Liu Y., Xu Y., Cui X., Zhang B., Wang X., Qin X., Zhang G. Temporary Survival Increasing the Diversity of Culturable Heterotrophic Bacteria in the Newly Exposed Moraine at a Glacier Snout // Biology. 2022. V. 11. P. 1555. https://doi.org/10.3390/biology11111555
  28. 28. Lupachev A.V., Abakumov E.V. Soils of Marie Byrd Land, West Antarctica // Eurasian Soil Science. 2013. V. 46. P. 994–1006. https://doi.org/10.1134/S1064229313100049
  29. 29. Lysak L.V., Maksimova I.A., Nikitin D.A., Ivanova A.E., Kudinova A.G., Soina V.S., Marfenina O.E. Microbial communities of soils of east antarctica // Moscow Univ. Biol. Sci. Bull. 2018ю V. 73. P. 104–112. https://doi.org/10.3103/S0096392518030124
  30. 30. Marchese E.P. Geobotanical comparison between two Japanese volcanoes: Mt. Fuji and Mt. Asama // Annali di Botanica. 2003. V. 3. P. 42–54.
  31. 31. Margesin R., Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 2537–2549. https://doi.org/10.1007/s00253-019-09631-3
  32. 32. Martinez-Alonso E., Pena-Perez S., Serrano S., Garcia-Lopez E., Alcazar A., Cid C. Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica // Scientific Rep. 2019. V. 9. P. 1–14. https://doi.org/10.1038/s41598-019-47994-9
  33. 33. Milojevic T., Cramm M.A., Hubert C.R., Westall F. “Freezing” Thermophiles: From One Temperature Extreme to Another // Microorganisms. 2022. V. 10. P. 2417. https://doi.org/10.3390/microorganisms10122417
  34. 34. Milojevic T., Zebec Z., Schimak M.P. Cultivation with powdered meteorite (NWA 1172) as the substrate enhances low-temperature preservation of the extreme thermoacidophile Metallosphaera sedula // Frontiers Astronomy Space Sci. 2020. V. 7. P. 37. https://doi.org/10.3389/fspas.2020.00037
  35. 35. Mironov V.A., Shcherbakova V.A., Rivkina E.M. Thermophilic bacteria of the genus Geobacillus from permafrost volcanic sedimentary rocks // Microbiology. 2013. V. 82. P. 389–392. https://doi.org/10.1134/S0026261713030089
  36. 36. Musilova M., Wright G., Ward J.M., Dartnell L.R. Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance // Astrobiology. 2015. V. 15. P. 1076–1090. https://doi.org/10.1089/ast.2014.1278
  37. 37. Oliver J. D. The viable but nonculturable state in bacteria // J. Microbiology. 2005. V. 43. P. 93–100.
  38. 38. Rampelotto P.H. Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology // Sustainability. 2010. V. 2. P. 1602–1623. https://doi.org/10.3390/su2061602
  39. 39. Schmidt S.K., Gendron E.M.S., Vincent K., Solon A.J., Sommers P., Schubert Z.R., Sowell P. Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth? // Antonie van Leeuwenhoek. 2018. V. 111. P. 1389–1401. https://doi.org/10.1007/s10482-018-1066-0
  40. 40. Shi T., Reeves R.H., Gilichinsky D.A., Friedmann E.I. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing // Microbial ecology. 1997. V. 33. P. 169–179. https://doi.org/10.1007/s002489900019
  41. 41. Soo R.M., Wood S.A., Grzymski J.J., McDonald I.R., Cary S.C. Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica // Environ. Microbiol. 2009. V. 11. P. 715–728. https://doi.org/10.1111/j.1462-2920.2009.01859.x
  42. 42. Steven B., Briggs G., McKay C.P., Pollard W.H., Greer C.W., Whyte L.G. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods // FEMS Microbiol. Ecol. 2007. V. 59. P. 513–523. https://doi.org/10.1111/j.1574-6941.2006.00247.x
  43. 43. Steven B., Leveille R., Pollard W.H., Whyte L.G. Microbial ecology and biodiversity in permafrost // Extremophiles. 2006. V. 10. P. 259–267. https://doi.org/10.1007/s00792-006-0506-3
  44. 44. Tebo B.M., Davis R.E., Anitori R.P., Connell L.B., Schiffman P., Staudigel H. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica // Frontiers Microbiol. 2015. V. 6. P. 179. https://doi.org/10.3389/fmicb.2015.00179
  45. 45. Teufel A.G., Morgan-Kiss R.M. Physiological and biochemical adaptations of Psychrophiles // Extremophiles. CRC Press, 2018. P. 185-208.
  46. 46. Vishnivetskaya T., Kathariou S., McGrath J., Gilichinsky D., Tiedje J.M. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments // Extremophiles. 2000. V. 4. P. 165–173. https://doi.org/10.1007/s007920070031
  47. 47. Vishnivetskaya T.A., Mironov V.A., Abramov A.A., Shcherbakova V.A., Rivkina E.M. Biogeochemical characteristics of earth’s volcanic permafrost: an analog of extraterrestrial environments // Astrobiology. 2022. V. 22. P. 812–828. https://doi.org/10.1089/ast.2021.0137
  48. 48. Vishnivetskaya T.A., Petrova M.A., Urbance J., Ponder M., Moyer C.L., Gilichinsky D.A., Tiedje J.M. Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods // Astrobiology. 2006. V. 6. P. 400–414. https://doi.org/10.1089/ast.2006.6.400
  49. 49. Vorobyova E., Minkovsky N., Mamukelashvili A., Zvyagintsev D., Soina V., Polanskaya L., Gilichinsky D. Micro-organisms and biomarkers in permafrost // Permafrost Response on Economic Development, Environmental Security and Natural Resources. 2001. P. 527–541. https://doi.org/10.1007/978-94-010-0684-2_36
  50. 50. Vorobyova E., Soina V., Gorlenko M., Minkovskaya N., Zalinova N., Mamukelashvili A., Vishnivetskaya T. The deep cold biosphere: facts and hypothesis // FEMS Microbiol. Rev. 1997. V. 20. P. 277–290. https://doi.org/10.1111/j.1574-6976.1997.tb00314.x
  51. 51. Wall K., Cornell J., Bizzoco R.W., Kelley S.T. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles // MicrobiologyOpen. 2015. V. 4. P. 267–281. https://doi.org/10.1002/mbo3.236
  52. 52. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study // J. Bacteriol. 1991. V. 173. P. 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
  53. 53. Wen J., Smelt J.P., Vischer N.O., de Vos A.L., Setlow P., Brul S. Heat activation and inactivation of bacterial spores: is there an overlap? // Appl. Environ. Microbiol. 2022. V. 88. P. e02324-21. https://doi.org/10.1128/aem.02324-21
  54. 54. Zakharikhina L.V., Litvinenko Y.S. Specific features of the morphology of volcanic soils in the altitudinal zones of Kamchatka // Eurasian Soil Science. 2013. V. 46. P. 611–621.
  55. 55. Zhang D.C., Brouchkov A., Griva G., Schinner F., Margesin R. Isolation and characterization of bacteria from ancient Siberian permafrost sediment // Biology. 2013. V. 2. P. 85–106. https://doi.org/10.3390/biology2010085
  56. 56. Zhang G., Ma X., Niu F., Dong M., Feng H., An L., Cheng G. Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai–Tibet Plateau permafrost region // Extremophiles. 2007. V. 11. P. 415–424. https://doi.org/10.1007/s00792-006-0055-9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library