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Предварительно оценены возможности пилотной модели – классификатора, обученного распозна-
ванию следов микробной деятельности на твердых поверхностях, свидетельствующих о развитии 
почвоподобных тел. Для машинного обучения собрана база данных объемом 500 образцов, опи-
санных самостоятельно и в открытых источниках в период с 1988 г. по настоящее время; среди 
них 59 образцов представляли почвенные горизонты, 146 материнские породы и почвоподобные 
образования, а также породообразующие минералы, сопутствующие компоненты почвообразова-
ния, ксенобиотики, распространенные в техногенно преобразованных ландшафтах мира. Образцы 
вошли в базу данных в вариациях дисперсности, покрытия биопленками и пленками иной природы, 
химической и физической обработки. Массив значимых для машинного обучения признаков образ-
цов включал квантили распределения контактного угла смачивания и обобщающие категориальные 
показатели геометрии поверхности, минерального состава, состояния органического вещества. Це-
левой функцией классификации служило наличие устойчивых следов микробной деятельности на 
твердой поверхности. Недостающие данные реконструировали с помощью процедур Монте-Карло 
и случайной перевыборки. В результате численных экспериментов по оптимизации качества обу-
чения получен сбалансированный обучающий набор данных, содержащий 1233 элемента псевдовы-
борок. Обучено и оценено 6 моделей классификаторов с вариацией параметров. Наиболее произво-
дительный классификатор – пятислойная нейронная сеть со случайно отключаемыми нейронами – 
продемонстрировал на тестовой выборке правильность предсказаний 0.74 и ROC AUC 0.80, что 
выше, чем у более простых и быстродействующих (правильность и ROC AUC 0.70). На основании 
несогласия классификаций между экспертом-человеком и обученным алгоритмом установлены об-
щие черты сложных для машинной классификации образцов: со следами жизнедеятельности, кар-
бонатные, дисперсные – что позволяет определить направление сбора информации для повышения 
производительности классификатора. Разработка алгоритма распознавания следов микробной де-
ятельности полезна для уточнения механизмов почвообразования, биогеохимических и биогеотех-
нологических процессов в грунтах различного происхождения, в том числе терраформирования.
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ВВЕДЕНИЕ

Увеличение доли техногенных и техногенно 
преобразованных грунтов (Urbosols, Technosols) 
в используемой части суши приводит к развитию 

почвоподобных тел (ППТ), отличающихся высо-
кой неоднородностью и нестабильностью свойств 
по сравнению с естественными грунтами и почва-
ми [2]. Эти образования, вскрываясь, например, 
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эрозионным процессом, могут перезапустить 
почвообразование. Также они способны серьезно 
и непредсказуемо влиять на устойчивость почвы 
или массива грунта к механическим нагрузкам и 
факторам выветривания  [3, 4, 10, 105]. Включе-
ния ППТ, несмотря на небольшую долю в объе-
мах, могут оказаться критическими для пласти-
ческих свойств, содержания органического веще-
ства, влиять на темпы эрозии почвы и эмиссию 
углекислого газа в масштабах массива. При этом, в 
зависимости от вида использования земель чело-
веком, ППТ могут выступать и как желательные, 
и как нежелательные образования. Особенности 
ППТ во многом определяются направлением био-
геохимической деятельности микрофлоры [1, 4, 38, 
105]. Управление поведением ППТ в техногенных 
ландшафтах можно осуществлять с помощью био-
геотехнологий [26, 28, 59, 72, 107, 118]. При этом 
мониторинг хода биогеотехнологических измене-
ний должен быть обеспечен достаточно чувстви-
тельными, оперативными и гибко настраиваемыми 
методами, оперирующими большим количеством 
параметров.

В первую очередь требуется диагностика нали-
чия ППТ, которую проводят по совокупности визу-
альных признаков и пространственного распреде-
ления веществ и структур [2, 6, 12, 100]. К таковым 
признакам относят: четкую слоистую архитектуру с 
закономерной последовательностью самостоятель-
ных слоев или микрослоев, следы вертикального 
перетока вещества между слоями, определенный 
диапазон для соотношения микро- и макропори-
стости, присутствие биомаркеров (фосфор, сера, 
азот) и органического вещества, в количествах и 
типах отличающегося от вмещающей породы.

Наиболее сложным при исследовании предпо-
лагаемого включения ППТ во вмещающей породе 
оказывается установить наличие в его настоящем 
или прошлом биологической составляющей. Лю-
бые признаки протекания биогеохимических про-
цессов имеют геохимических двойников (в част-
ности, это проявляется, когда скорости процессов 
неизвестны), поэтому каждый признак в отдельно-
сти не может служить доказательством деятельно-
сти живой составляющей. В итоге комплекса био-
геохимических и геохимических преобразований, 
в осадочно-метаморфических породах содержится 
до 9% гумусового вещества и аминокислот и до 1% 
битумоидов и керогена [9, 13, 15, 47]. Указанные 
органические вещества способны сохраняться в 
породе от миллионов до миллиардов лет, маски-
руя более современные следы жизнедеятельно-
сти [13, 17].

Несмотря на частичную субъективность диагно-
стики признаков ППТ, достоверно известен факт, 
что в условиях биосферы ППТ обязательно долж-
ны содержать следы микробной активности. Наи-
более стойкие следы остаются после поливидовых 

биопленок, которые являются основной формой 
существования активных микробных сообществ на 
любой твердой поверхности в пределах биосферы, 
гипотетически на протяжении всей истории жиз-
ни на Земле [19, 42]. В классическом определении 
биопленки – это микробное сообщество, характе-
ризуемое клетками, необратимо прикрепленными 
к субстрату, поверхности раздела или друг к другу, 
встроенными в матрицу продуцируемых ими вне-
клеточных полимерных веществ и проявляющими 
измененный фенотип в отношении скорости роста 
и транскрипции генов. Поскольку поливидовые 
биопленки в благоприятных условиях способны 
практически к неограниченному по времени су-
ществованию на поверхности, внеклеточный по-
лимерный матрикс постепенно проникает в твер-
дый субстрат, вызывая глубокие преобразования 
последнего (крайний вариант такого преобразо-
вания – строматолиты). ППТ являются продуктом 
именно таких преобразований, что придает их по-
верхностям особенности по сравнению с породами 
и материалами, не подвергнутыми глубокому воз-
действию живого вещества [99]. Для вскрытия этих 
особенностей пригодны анализ больших данных и 
машинное обучение (МО).

Признаки присутствия биопленок на твердых 
поверхностях более определены и разработаны к 
настоящему времени, чем признаки, пригодные 
для диагностики ППТ. В частности, известно, что 
под действием биопленок изменяются пределы 
смачиваемости поверхности частиц твердых тел [18, 
19, 25, 96]. В течение жизни биопленка меняет свои 
поверхностные свойства: на определенных стадиях 
развития и под действием стрессовых факторов она 
инициирует гидрофобные взаимодействия между 
твердыми частицами и образование водостойких 
агрегатов  [19, 42]. При  этом гидрофобность/ги-
дрофильность биопленки варьирует в зависимо-
сти от стадии ее зрелости и стрессовых факторов 
окружающей среды: в первые 10–20 сут после при-
крепления к твердой поверхности биопленка про-
дуцирует гидрофобные вещества, а затем специ-
фические мембранные структуры, приводящие к 
необратимой адгезии клеток к поверхности [25]. 
С момента необратимой адгезии поверхность био-
пленки может становиться и гидрофильной, обра-
зуя набухающий внеклеточный полисахаридный 
матрикс [121]. В итоге на популяциях бактериаль-
ных клеток даже одного и того же штамма отме-
чено одновременное присутствие гидрофильных и 
гидрофобных пятен [41]. Эти пятна неодинаковой 
смачиваемости являются характерным признаком 
деятельности биопленок и, вероятно, способны со-
храняться на контактирующем субстрате в течение 
долгого времени.

Наиболее широко для измерения смачиваемо-
сти горных пород и других материалов применяет-
ся контактный угол смачивания (КУ). Физически 
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КУ представляет собой угол, измеряемый в точке 
периметра контакта трех фаз (твердая поверхность–
жидкость–газ), который образует касательная к 
поверхности раздела жидкость–газ с твердой по-
верхностью [14]. Материалы с КУ в пределах 0°–90° 
считают гидрофильными, а в пределах 90°–180° – 
гидрофобными. По существующим данным мож-
но заключить, что направление изменений смачи-
ваемости поверхностей под биопленками зависит 
от стадии жизни биопленки и от свойств самой 
поверхности  [5, 25, 42, 53, 86, 98]. Устойчивая 
биопленка вызывает гидрофобизацию лишь от-
дельных участков поверхности, не приводя к их 
супергидрофобности, так как в противном случае 
теряется доступ к питательным растворам. Одна-
ко идентификация устойчивых следов микробной 
деятельности на основании одной лишь гидрофо-
бизации осложнена, поскольку сходный процесс 
идет и после пожаров, и после внесения в почву 
веществ биологического происхождения: навоза, 
казеина, хитозана, крахмала, лигнина, агаровой 
или геллановой камеди и др., а также ряда ксено-
биотиков [30, 40, 71, 79]. В таких сложных случаях, 
когда отдельно взятый индикатор неоднозначен по 
отношению к явлению, используется подход “от-
печатка пальца” (“fingerprinting” в англоязычной 
литературе). В частности, анализ геохимических 

“отпечатков пальцев” основан на идее о том, что 
химический состав минерала или горной породы 
отражает геологические процессы, связанные с их 
образованием [57, 61]. “Отпечаток пальца” – это 
некоторое уникальное сочетание признаков, од-
нозначно указывающее на конкретный класс объ-
ектов. Подобным “отпечатком пальца” в случае 
следов микробной деятельности может оказаться 
вид распределения КУ [14, 97]. Следовательно, для 
идентификации следов микробной деятельности 
необходимо сравнить исследуемую поверхность с 
аналогичной без такого отпечатка.

Поставленная задача идентификации следов 
микробного преобразования твердой поверхно-
сти по смачиваемости нетривиальна, из-за неод-
нозначности как изменений смачиваемости под 
биопленками, так и сохранности таких следов на 
разных поверхностях, однако видится решаемой 
с помощью моделей МО. Цель при этом состоит 
в том, чтобы научить модель различать горную 
породу с индивидуальным набором признаков, 
слабо затронутую микробной деятельностью, и 
ту  же породу, но после длительного взаимодей-
ствия с биопленками. При этом следует исходить 
из предположения о том, что некоторое взаимо-
действие поверхности с биохимическими агента-
ми неизбежно при отборе образцов почв, горных 
пород и геоматериалов, поэтому оно должно быть 
признано фоновым шумом. Исходя из постанов-
ки задач исследования, шумом предлагается счи-
тать биопленку младше 48 ч, не прошедшую этап 

необратимой адгезии на поверхности, неустойчи-
вую к механическим воздействиям или смыву во-
дой, или ее следы [25].

Модель МО требует оснащения набором ин-
дивидуальных признаков поверхностей, которые 
некоторым образом связаны со смачиваемостью. 
В минимальном варианте это могут быть дисперс-
ность породы, наличие глинистых и других поро-
дообразующих минералов, цемента, частиц сажи, 
компонентов нефти, синтетических органических 
соединений, признаков гидроморфизма [63, 103]. 
Для формирования обучающей базы данных не-
обходимо экспертное описание указанных при-
знаков, измерение КУ и диагностика следов де-
ятельности биопленок. Последняя традиционно 
проводится методами метагеномики, метапротео
мики, анализа элементного состава поверхности, 
микроморфологии и др. [5, 19, 25, 26, 33, 46, 53, 
80, 82, 86, 97, 99, 100, 110, 117]. Обучающая и те-
стовая базы данных в идеале должны включать 
все разнообразие компонентов, которое может 
содержаться в ППТ. С другой стороны, адекват-
ный обучающий набор признаков, формируемых 
на основе этих компонентов, ограничивается ко-
личеством доступных данных.

В плане наполнения базы о свойствах поверх-
ности и их изменениях под биопленками востребо-
ваны данные о почвоподобных новообразованиях 
в подземных средах, модификации минералов и 
искусственных материалов, помещенных в почвы, 
поверхностных свойствах биопленок на разных 
стадиях жизни и др. [5, 6, 12, 19, 33, 51, 53, 82, 86, 
89, 100, 105]. Кроме того, для алгоритмов МО есть 
необходимость в образцах, где биопленка удалена 
различными способами обработки, либо, наоборот, 
покрытых составами (пленками), маскирующими 
исходную поверхность.

Некоторые особенности МО в почвоведении 
предполагают иную расстановку акцентов в рабо-
те с данными, чем принято в отраслях, традици-
онно связанных с МО (рис. 1). Вместо высоких 
скоростей обработки вертикальных массивов объ-
емом выше 107 позиций при работе с информаци-
ей о почвах, горных породах и ППТ имеют место 
небольшие тщательно отобранные базы данных с 
высокой долей труда экспертов. Техническая слож-
ность определения каждого показателя в таких ба-
зах зачастую превосходит сложность построения 
модели, что является причиной появления мно-
жества источников погрешности, включая разные 
виды ошибок, искусство экспериментатора и др. 
Систематизация данных внешних источников для 
дополнения собственных наблюдений во многом 
исключает автоматизацию процесса, поскольку 
предполагает структурирование данных, рассе-
янных по тексту в нестандартном или даже неяв-
ном виде. Некоторые признаки при этом прихо-
дится реконструировать по косвенным сведениям 
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авторов источника либо из соображений здравого 
смысла. Из сказанного следует, что предсказатель-
ные возможности базы данных почвенных свойств 
во многом зависят от заложенной избыточности 
признаков и разумного баланса между детально-
стью и надежностью описания образца.

В настоящем исследовании поставлен во-
прос о возможности обучить классификатор для 
распознавания следов деятельности биопленок 
на поверхностях, присутствующих в техногенно 
преобразованных грунтах и свидетельствующих 
о развитии ППТ. Задача состояла в том, чтобы 
провести обучение, опираясь, в первую очередь, 
на признаки, формирующие “отпечаток паль-
ца” биопленки. В исследовании проверяли гипо-
тезу о том, что таким “отпечаком пальца” могут 
быть характеристики статистического распреде-
ления КУ. При этом необходимо учитывать и те 
признаки поверхности, которые традиционно 
определяются параллельно смачиваемости, т.е. 
отражают зависимость смачиваемости от геоме-
трии и химического состава поверхности. Цикл 
работы с информацией начинался с отбора соб-
ственных и достоверных внешних источников, а 
также формирования признаков поверхностей. 
Данный подход задавал некоторую фрагментар-
ность материала, поступающего на вход моделей, 
т.е. для успешной классификации от алгоритма в 
ходе МО требовалось развить высокую обобщаю-
щую способность.

Некоторые используемые термины и сокращения:
КУ – контактный угол смачивания твердых по-

верхностей.
ППТ – почвоподобные тела [2].
МО – машинное обучение.
СКО – среднее квадратическое отклонение.
ROC (receiver operating characteristic) – устойчи-

вая аббревиатура, обычно не переводится – гра-
фический подход к анализу производительности 
классификатора,

ROC AUC (area under curve) – площадь под кри-
вой ROC.

Бинарные признаки – качественные или полу-
количественные признаки объекта, заданные как 
0 – отсутствие и 1 – присутствие.

DT (Decision Tree) – алгоритм МО дерево ре-
шений.

RF (Random Forest) – алгоритм МО случайный лес.
GB (Gradient Boosting) – алгоритм МО гради-

ентный бустинг.
KNN (k Nearest Neighbors) – алгоритм МО бли-

жайшего соседа.
LR (Logistic Regression) – алгоритм МО логи-

стическая регрессия.
ANN (Artificial Neural Network) – искусственная 

нейронная сеть.

ОБЪЕКТЫ И МЕТОДЫ

Общие принципы работы с данными. В  основу 
разработки классификаторов положено две гипо-
тезы: 1) устойчивые следы биопленки могут быть 
обнаружены на поверхностях по характерному рас-
пределению КУ (“отпечатку пальца”); 2) распреде-
ление КУ на поверхности нормально, если в источ-
нике явно не утверждается обратное.

Цикл моделирования предполагал: 1) структу-
рирование данных, полученных в ходе обработки 
источников; 2) разбиение данных на обучающую 
и тестовую выборки; 3) предобработку данных; 
4) выбор нескольких алгоритмов МО; 5) оптимиза-
цию и обучение алгоритмов; 6) выбор наилучшего 
классификатора по производительности; 7) срав-
нение прогноза классификатора с альтернативной 
экспертной диагностикой присутствия биопленки 
на поверхностях.

Для наполнения базы данных о свойствах по-
верхностей почв, горных пород, геоматериалов и 
искусственных материалов, подвергнутых как воз-
действию биопленок, так и антимикробной обра-
ботке, собственные исследования были сведены с 
данными открытых источников (табл. 1). Согласно 
задаче исследования сформировано два принци-
па отбора образцов в сводку. Первый – образцы 
должны были представлять собой почвы, ППТ или 

Предсказательные 
возможности базы почв. 

свойств

Свойства  
почв, пород,

грунтов

Объем,  
плотность  

и сбалансиро-
ванность базы 
почв. свойств Неприкос-

новенность 
исходной базы 
почв. свойств

Вскрытые 
взаимозависи-
мости свойств 

почв

Разнообразие 
представитель-

ных классов 
почв. свойств

Рис. 1. Некоторые принципы предобработки данных 
для целей МО в почвоведении.
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компоненты, в них входящие; при этом учитыва-
лось, что эти компоненты могут демонстрировать 
совершенно разные поверхностные свойства, на-
ходясь в разных состояниях дисперсности или ше-
роховатости, – для учета этого фактора, например, 
в базу были внесены порошок кальцита, шлифо-
ванная поверхность кальцитовых кристаллов и т.п. 
На основе собственных наблюдений формирова-
лась тестовая база данных для проверки качества 
классификаторов, а на основе внешних источни-
ков – обучающая база данных.

При обработке данных, построении и оценке 
моделей за ориентир были приняты следующие 
документы: ГОСТ Р 24668-2022 (Информационные 
технологии. Искусственный интеллект. Структура 
управления процессами для анализа больших дан-
ных), ГОСТ Р 59276-2020 (Системы искусствен-
ного интеллекта. Способы обеспечения доверия), 
ГОСТ Р 59898-2021 (Оценка качества систем ис-
кусственного интеллекта), ГОСТ Р 70466-2022/
ISO/IEC TR 205471:2020 (Информационные тех-
нологии. Эталонная архитектура больших данных), 
ГОСТ Р 70462.1-2022 (Информационные техноло-
гии. Интеллект искусственный. Оценка робаст-
ности нейронных сетей), а также документация 

языка программирования Python. Все этапы цик-
ла работы с данными от предобработки до визуа-
лизации результатов моделирования реализованы 
в среде для совместной разработки Google Colab 
(https://colab.research.google.com).

Объекты. Рассматривались как естественные, 
так и техногенные образования и искусственные 
материалы, имеющие в составе компоненты, при-
сущие почвам и ППТ, распространенным в техно-
генно преобразованных ландшафтах мира. Образ-
цы почв, материнских пород и ППТ географически 
относились к разным областям Евразии, Северной 
Америки, Австралии. В  качестве целевой функ-
ции моделирования был принят признак наличия 
устойчивых следов развитой биопленки на поверх-
ности материала. Развитой считалась биопленка, 
прошедшая этап необратимой адгезии к поверх-
ности и имеющая сформированный матрикс. Та-
кая биопленка не может быть смыта с поверхности 
образца водой и устойчива к слабым механическим 
воздействиям [25]. Это ограничение для классифи-
кации поверхностей относит образцы, зараженные 
микроорганизмами не более 48 ч, к незаселенным 
биопленками, что удобно для отсечения случай-
ного фона. В  литературе признается некоторая 

Таблица 1. Обзор образцов, на базе свойств которых проведено МО алгоритмов классификации наличия 
устойчивых следов биопленок (в скобках – количество образцов)

Группа образцов Тип образцов Ссылки на источники

Почвы (59) Kastanozem, Cambisol, Chernozem, Entisol, 
Inceptisol, Luvisol, Oxisol, Spodosol, Podzol, 
Albeluvisol, Retisol, Mollisol, Alfisol, Fluvisol

С.и.*, [8, 14, 16, 27, 31, 32, 55, 98, 104, 
112]

Материнские 
породы (127)

Лёссы, известняки, песчаники, мергели, 
карбонатные и бескарбонатные глины, пески, 
ферралиты, аллювиальные отложения, каолин, 
бентонит, филлит, сланцы, гранит, мрамор 

С.и., [14, 21, 22, 24, 31, 32, 36, 45, 52, 
55, 63, 74, 75, 78, 79, 87, 89, 90, 98, 
103, 104, 109, 112]

Породообразующие 
минералы (71)

Кварц, слюда, гипс, гематит, гетит, ортоклаз, 
глинозем, тальк, бемит, каолинит, монтморил-
лонит, иллит, галлуазит, кальцит, аттапульгит, 
ферригидрит

С.и., [8, 14, 18, 19, 31, 35, 64, 76, 80, 
83, 89, 94, 96, 103, 115]

Минорные 
компоненты (102)

Уголь, бактериальные культуры, твердые ор-
ганические кислоты, полисахариды, смолы, 
углеводороды, кремний, кунцит, гидденит, ру-
бин, сапфир, алмаз, стекла, галогениды

С.и., [11, 14, 20, 21, 22, 23, 24, 25, 80, 
29, 31, 34, 36, 42, 44, 49, 55, 56, 58, 62, 
63, 65, 69, 76, 74, 77, 79, 80, 81, 82, 83, 
87, 89, 90, 93, 96, 103, 104, 110, 113, 
114, 115, 116, 122]

Ксенобиотики, 
искусственные 
материалы (122)

Сплавы, пластики, силиконы, графен [7, 14, 23, 31, 36, 37, 39, 43, 46, 48, 49, 
50, 54, 56, 58, 60, 62, 65, 66, 67, 68, 69, 
70, 73, 78, 79, 81, 84, 91, 92, 93, 95, 101, 
106, 108, 111, 113, 114, 117, 119, 120]

Специфические 
природные 
образования (19)

Мраморный оникс, пещерные образования С.и. [97, 98]

*С.и. – собственные измерения.



268	 СОФИНСКАЯ и др.

ПОЧВОВЕДЕНИЕ № 2 2025

неопределенность относительно того, что считать 
следами биопленок в горных породах, которую 
разрешить пока не удалось  [80, 99, 100]. Эта  не
определенность связана с неопределенным сроком 
жизни поливидовой биопленки на поверхности, а 
также периодами угасания и возобновления жиз-
недеятельности в порах и трещинах горной поро-
ды, что во многих случаях не позволяет провести 
границу между следами современных биопленок и 
сингенетическим органическим веществом. Соот-
ветственно, данное положение вещей передает вы-
нужденную неуверенность алгоритмам машинного 
обучения. Зачастую вывод древних или сильноми-
нерализованных останков биопленки на поверх-
ность образца сопряжен с агрессивной обработкой 
(абразивами, травлением), которая сама по себе 
изменяет поверхностные свойства [80]. В связи с 
этим в базу данных вносили информацию об об-
разцах с различной степенью дисперсности (начи-
ная от шлифов и заканчивая тонкодисперсным ма-
териалом, где это позволялось природой образца). 
Кроме того, учитывали информацию о способах 
подготовки и преимущественном составе поверх-
ности образца.

Количественная информация об образце выра-
жалась через распределение его КУ. Наиболее ча-
сто применяемым в почвоведении методом опре-
деления смачиваемости является метод измерения 
КУ на статической сидячей капле, однако наряду 
с ним так же применяются методы прикрепленно-
го пузырька, динамической капли, тарелок Виль-
гельми, времени проникновения капли, высоты 
капиллярного поднятия, измерения КУ по томо-
граммам образцов, пропитанных рассолами тяже-
лых элементов (KI). Из-за важности смачиваемо-
сти поверхности для поставленной цели МО метод 
определения КУ был учтен в базе данных, хотя ча-
сто разные методы дают сопоставимые результаты.

Поскольку распределение КУ неочевидно (рис. 2), 
ряды измерений контактных углов смачивания 
были описаны с помощью 5 процентилей (10, 25, 
50, 75, 90), экстремальных значений и среднего. 
В случаях, когда в источнике информации не были 
приведены данные, позволяющие получить ука-
занные процентили КУ, проводили реконструкцию 
выборки, согласно процедуре, описанной в разделе 
Предобработка рядов КУ.

В базу данных вносили и другие признаки со-
стояния поверхности, определяющие основные 
химические соединения в составе. Однако, в силу 
разнообразия состава как почв, так и ППТ, все 
уровни содержания всех соединений учесть было 
невозможно, а излишняя детальность могла по-
вредить обобщающей способности обучаемых ал-
горитмов. Поэтому из признаков состава поверх-
ности для МО были отобраны максимально обоб-
щающие и представлены в бинарном виде.

Предобработка данных заключалась в стандарт-
ных процедурах резервирования данных для те-
стирования моделей, реконструкции недостаю-
щих данных, устранения дисбалансов в категориях 
признаков, масштабировании значений количе-
ственных признаков. Все процедуры предобработ-
ки выполняли на языке Python, преимущественно 
с помощью библиотек Pandas, Scikit-learn и Numpy.

Для того, чтобы обеспечить надежность тести-
рования модели и, следовательно, ее качество, на 
начальном этапе обработки данных была ликвиди-
рована возможность их утечки. Утечкой называют 
частичное смешение данных тестовой базы и базы, 
на которой происходит МО. В представленном слу-
чае тестовая часть базы данных была отделена от 
обучающей части до манипуляций по реконструк-
ции данных. В  итоге для тестовой базы данных 
было отобрано 95 из 500 образцов по принципу 
наибольшего разнообразия категорий признаков. 
Далее для тестовой базы данных проводили только 
масштабирование отдельных признаков, а для обу
чающей – реконструкцию данных, балансировку и 
масштабирование признаков.

Предобработка рядов КУ. В ряде статей приве-
дены не полные ряды измерений КУ, а указаны 
только средние величины, СКО и, реже, некоторые 
квантили. В таком случае выполняли реконструк-
цию ряда измерений по указанным выборочным 
моментам с помощью библиотеки Python Random, 
предполагая, вслед за авторами, нормальное рас-
пределение данных (метод Монте-Карло). Авторы 
настоящего исследования понимают, что гипотеза 
о нормальном распределении КУ очень редко про-
веряется в практике. Однако перебор различных 
способов реконструкции требует значительных за-
трат вычислительных и временных ресурсов, поэ-
тому на этапе создания общего подхода к класси-
фикации поверхности на основе МО ограничились 
минимальным вариантом.

Было проведено масштабирование характе-
ристик КУ с тем, чтобы значения лежали в ди-
апазоне от 0 до 1, с помощью функции масшта-
бирования MinMaxScale библиотеки Scikit-learn 
(Документация Python Scikit-learn. Предобработ-
ка. https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html).

Балансировку представленности признаков по ка-
тегориям производили только для тренировочной 
базы данных. Балансировку осуществляли с целью 
выполнения условия: одна категория бинарного 
признака должна превышать по представленности 
другую не более, чем в 3 раза (рис. 3). В ходе балан-
сировки производили генерацию псевдовыборок: 
дублирование образцов с недостающими катего-
риями признаков и случайную перевыборку из-
мерений (или реконструированных значений) КУ 
в этих дублях с последующим вычислением стати-
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стик для каждого. Данная процедура была реали-
зована с помощью библиотеки Python Scikit-learn 
(утилита resample). Весь процесс балансировки по-
вторяли несколько раз с доведением каждой вновь 
полученной обучающей базы данных до этапа про-
верки моделей, поскольку заложенная в процессе 
балансировки случайность должна была отражать-
ся на результатах моделирования.

После устранения признаков, в которых сбалан-
сировать категории не представлялось возможным, 
в рабочей базе данных осталось 8 характеристик КУ 
и 8 бинарных признаков поверхности (табл. 2). Бо-
лее подробное разбиение качественных признаков 
на категории, а также учет признаков, связанных 
с методиками измерения КУ, в настоящий момент 
неосуществимы вследствие недостатка сведений, 
однако в структуру базы данных эта возможность 
включена.

Выбор типа и архитектуры модели МО осущест-
вляли, исходя из пригодности для работы с не-

большими наборами данных, простоты реализа-
ции, производительности и интерпретируемости 
результатов моделирования. Всего было протести-
ровано 6 алгоритмов: классификация методом бли-
жайшего соседа (KNN), логистическая регрессия 
(LR), дерево решений (DT), случайный лес (RF), 
градиентный бустинг (GB) и глубокая нейронная 
сеть (ANN). Первые три алгоритма просты и легко 
интерпретируемы, но более склонны к переобуче-
нию. Последние три представляют собой “черные 
ящики”, поэтому сложнее интерпретируются, од-
нако содержат возможности контроля переобуче-
ния и, соответственно, способны развить большую 
обобщающую способность в ходе обучения. По-
строение нейронной сети реализовано с помощью 
библиотеки Python TensorFlow Keras, а остальные 
алгоритмы – с помощью Python Scikit-learn. В ка-
честве базового варианта был выбран классифика-
тор на основе дерева решений (как наиболее про-
стой со всех точек зрения), с которым сравнивался 
результат работы остальных классификаторов.
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Рис. 2. Примерный вид распределений КУ на поверхностях образцов с устойчивыми следами биопленок (голубые 
столбики) и без них (розовые столбики) по собственным измерениям: 0 – предметное стекло: дезинфицирующий 
раствор и прокаливание, 1 – стекло с биопленкой, 12 – шлиф мраморного оникса, 13 – мраморный оникс с био-
пленкой, 86 – бентонит с биопленкой, 87 – бентонит: прокаливание, 108 – каолин: прокаливание, 109 – каолин 
с биопленкой.
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Оптимизацию гиперпараметров классифика-
торов производили автоматически, исходя из 
максимизации информационного выигрыша 
методом уполовиненного перекрестного поиска 
по сетке гиперпараметров HalvingGridSearchCV 
(документация Python Scikit-learn. Выбор моде-
ли на основе HalvingGridSearchCV. https://scikit-
learn.org/stable/modules/generated/sklearn.model_
selection.HalvingGridSearchCV.html). Для коррек-
ции классификаторов в ходе обучения применяли 
кросс-валидацию – проверку качества модели в 
ходе обучения на случайно выделяемой установ-
ленной доле обучающей выборки.

Далее оценивали значимость каждого фак-
тора для способности модели различать классы 
образцов: наличие и отсутствие следов биоплен-
ки. Для этого использовали уменьшение ошибки 
предсказания при учете очередного фактора (зна-
чимость по Джини) [85].

Архитектуру нейронной сети подбирали, исходя 
из минимизации числа задействованных нейро-
нов, поскольку база данных невелика. Для этого, 
в частности, использовали слои типа Dropout, где 
часть нейронов случайным образом отключалась. 
При компиляции модели подбирали размер пачки 
данных (batch), оптимизатор и его гиперпараметры. 
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Рис. 3. Сбалансированные признаки поверхности 
образцов, использованных для МО. Расшифровка 
обозначений признаков – в табл. 2.

Таблица 2. Признаки поверхности образцов почв, 
горных пород и других материалов, учтенные класси-
фикаторами

Обозначение 
признака

Расшифровка обозначения  
признака

“следы” Наличие устойчивых следов био-
пленки – целевая функция (1 – есть, 
0 – нет)

“дисперс” Дисперсность (1 – дисперсное веще-
ство, 0 – слитая поверхность)

 “гл.мин” Глинистые минералы в макроколи-
чествах (1 – есть, 0 –нет)

“Al” Соединения алюминия в макроколи-
чествах (1 – есть, 0 – нет)

“Si_цем” Силикатный цемент (1 – есть, 0 – нет)
“CO3_ цем “ Карбонатный цемент (1 – есть, 0 – нет)
“Na” Соединения натрия в макроколиче-

ствах (1 – есть, 0 – нет)
“ксеноб” Органическое вещество, не 

относящееся к современным 
биопленкам – уголь, нефть, 
искусственные полимеры, 
кремнийорганика (1 – есть, 0 – нет)

“гидромрф” Признаки гидроморфизма: сведения 
о восстановительной обстановке, за-
топлении, болотных и аллювиальных 
почвах и грунтах (1 – есть, 0 – нет)

“КУ_ср” Среднее выборочное значение КУ
“СКО” СКО по выборке КУ
“КУ_мин” Минимальный наблюдаемый КУ для 

образца
“КУ_макс” Максимальный наблюдаемый КУ 

для образца
“КУ_10” Процентиль 10 для выборки КУ
“КУ_25” Процентиль 25 для выборки КУ
”КУ_50” Процентиль 50 для выборки КУ (ме-

диана)
”КУ_75” Процентиль 75 для выборки КУ
”КУ_90” Процентиль 90 для выборки КУ
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Выбор происходил, исходя из устойчивости моде-
ли к переобучению, правильности предсказаний и 
скорости обучения. В процессе обучения проис-
ходило случайное перемешивание образцов вну-
три тренировочной базы данных, поэтому один и 
тот же образец мог несколько раз попасть в разные 
пачки данных.

Качество моделей оценивали, во первых, с помо-
щью меры правильности предсказаний (accuracy), 
которая выражает долю правильных предсказаний 
в общем количестве предсказаний (Документация 
Python Scikit-learn https://scikit-learn.org/stable/
modules/model_evaluation.html). Во-вторых, про-
цесс работы модели был визуализирован с помо-
щью кривой ROC, и использована метрика пло-
щади, ограничиваемой этой кривой – ROC AUC. 
ROC-кривая служит для определения того, рабо-
тает ли классификатор лучше, чем случайное уга-
дывание (прямая y = x)  [102]. ROC AUC модели 
наилучшего качества стремится к 1. Кроме того, 
сравнение качества моделирования разными ал-
горитмами проводили с помощью матриц неточ-
ности предсказаний (confusion matrix) [88]. Порог 
отсечения на матрице неточности подобран таким 
образом, чтобы доли ложных предсказаний в от-
рицательном и положительном классе были макси-
мально близкими.

Таким образом, полная последовательность 
численных экспериментов с обучающей базой дан-
ных сводилась к следующему:

– балансировка категорий в признаках, ослож-
ненная случайной перевыборкой КУ из исходных 
выборок по образцам;

– вариация алгоритмов МО и их гиперпараме-
тров; здесь же – вариация архитектуры нейронной 
сети.

РЕЗУЛЬТАТЫ

Образцы были отражены в настолько различ-
ных состояниях, насколько позволила доступная 
информация: дисперсном, слитом, обработанном 
отжигом, облучением, химическими реагентами и 
покрытиями.

После балансировки категорий в каждом из 
признаков обучающая база данных, приведшая к 
наилучшему качеству обучения, содержала 1233 
объекта.

Результаты численных экспериментов с подбо-
ром гиперпараметров для обучающихся алгорит-
мов приведены в табл. 3.

Наиболее обучаемой оказалась нейронная сеть 
с 5 скрытыми слоями, из которых 2 – полносвя-
занных (Dense) и 3  – со случайно выключенны-
ми нейронами (Dropout); всего работало 125 ней-
ронов (см. приложение). Функциями активации 
нейронов в полносвязанных слоях были выбраны 

в порядке следования слоев от входного к выходно-
му: ReLU (rectified linear unit, или “линейный вы-
прямитель”) – softmax (функция, преобразующая 
список произвольных чисел в список вероятно-
стей, пропорциональных этим числам) – ReLU – 
tanh (гиперболический тангенс). В  слоях типа 
Dropout доля выключенных нейронов варьирова-
лась от 0.5 до 0.8.

После экспериментов оказалось, что оптимиза-
тор Adam приводил к наилучшим результатам при 
использовании с гиперпараметрами, установлен-
ными по умолчанию.

При анализе работы классификаторов DT и RF 
обнаружено, что наиболее значимыми признаками 
для принятия решений этими алгоритмами явля-
лись: присутствие глинистых минералов, карбо-
натного цемента, органического вещества, не от-
носящегося к биопленкам, шероховатость. Из ха-
рактеристик КУ классификаторы в первую очередь 
опирались на выборочное среднее и процентили 10, 
25, 75. Наименьшее значение для классификации 
имело наличие макроколичеств натрия и силикат-
ного цемента.

ОБСУЖДЕНИЕ

Сравнение обученных моделей с помощью метрик 
качества. По совокупности показателей ROC AUC, 
правильности, долей верных предсказаний в катего-
риях целевой функции “отсутствие устойчивых сле-
дов биопленки” и “наличие следов биопленки ” (по-
рог отсечения 0.5), времени обучения, наилучшим 
можно признать алгоритм нейронной сети с выбран-
ной архитектурой (табл. 4). Этот алгоритм относится 
к глубокому обучению, т.е. самостоятельно извлека-
ет диагностические признаки из предоставленных 
данных. Алгоритмы логистической регрессии, гра-
диентного бустинга и ближайшего соседа не имели 
других преимуществ, кроме быстродействия. Дере-
во решений относительно медленно проходило оп-
тимизацию гиперпараметров и обучение, при этом 
демонстрируя наибольшую правильность предска-
заний. Случайный лес показал второй результат по 
ROC AUC при более быстрой обучаемости. Тем не 
менее с учетом того, что запланировано дальнейшее 
дообучение модели на вновь поступающих данных, 
предпочтение отдается ANN.

Кривая ROC для ANN показывает, что алгоритм 
достаточно сильно отклоняется от случайного уга-
дывания тестовых данных о наличии биопленки 
(т.е. прямой линии y = x). Это позволяет заключить, 
что обучение прошло успешно (рис. 4).

Несогласие классификации образцов между обу-
ченными алгоритмами и экспертами-людьми. Свой-
ства образцов, для которых наблюдалось несо-
гласие между классификацией, данной экспер-
тами-людьми и практически всеми обученными 
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алгоритмами, приведены в табл. 5. В обобщенном 
виде сложный для классификации образец пред-
ставляет собой дисперсный карбонатно-алюми-
натный грунт со следами микробной деятельности, 
например, карбонатные почвы, мергели.

В некоторых из учтенных случаев несогласия 
невозможно однозначно утверждать, что ошибки 
исходят со стороны алгоритмов МО. Так, эксперт-
ная оценка предполагала, что почвы и природные 
грунты, не подверженные агрессивной обработке, 

Таблица 3. Оптимальные характеристики обученных алгоритмов классификации образцов на наличие устой-
чивых следов биопленок (расшифровка обозначений – в тексте)

Алгоритм Оптимизируемые гиперпараметры Гиперпараметры наилучших классификаторов

ANN Размер пачки данных (batch) для одной ите-
рации обучения

64

Тип оптимизатора tf.keras.optimizers.Adam (документация PyTorch. 
Оптимизатор Adam. https://pytorch.org/docs/

stable/generated/torch.optim.Adam.html)

Скорость обучения 0.01

Количество эпох обучения 300–400

RF Количество деревьев 27

Максимальная глубина дерева 14–15

Минимальное число ветвлений 6–8

Минимальное число листьев дерева 1–3

DT Максимальная глубина дерева 8

Минимальное число ветвлений 2–3

Минимальное число листьев дерева 2–3

LR С – параметр регуляризации 7

GB Количество деревьев 49

Максимальная глубина дерева 7

Скорость обучения 0.1

Доля тренировочной выборки для валидации 0.2

KNN Количество ближайших соседей 1–3

Таблица 4. Производительность алгоритмов классификации образцов на наличие устойчивых следов биопле-
нок (расшифровка обозначений – в тексте)

Алгоритм ROC AUC Правильность 
предсказаний

Верно  
предсказано  
отсутствие  
биопленки 

Верно  
предсказано  

наличие  
биопленки

Время  
обучения, с

% всех предсказаний

ANN 0.80 0.74 73 75 84.5

RF 0.73 0.72 77 71 34.8

DT 0.71 0.75 77 66 94.2

LR 0.70 0.70 70 71 0.9

GB 0.69 0.72 63 77 0.8

KNN 0.65 0.66 63 68 7.7
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всегда имеют устойчивые следы биопленок. Од-
нако алгоритмы отнесли к категории “отсутствие 
следов биопленки” некоторые образцы бентонита, 
карбонатных глин, аллювиальных почв и грунтов, 
подпочвенного слоя ферралита, а также образец 
чернозема, который несколько лет экспонировал-
ся со следовыми количествами нефти. Все эти об-
разцы долгое время хранились в воздушно-сухом 
состоянии, что могло отчасти уничтожить следы 
биопленок. К случаям несогласия привел и сдвиг 
условий экспозиции затопленных образцов в сто-
рону анаэробности – без дополнительной стимуля-
ции питательными средами в таких условиях фор-
мировалось особое микробное сообщество, что 
было расценено алгоритмами МО как “отсутствие 
следов биопленки”. Кроме того, затруднения у 

алгоритмов вызвали спелеотемы, обработанные со-
ляной кислотой, щелочью и спиртом, а также типа 

“пещерное молочко”. Экспертные оценки квали-
фицировали эти образцы как содержащие устой-
чивые следы микробной деятельности, поскольку 
в ходе анализов было зафиксировано обилие ми-
кроорганизмов. Однако вполне возможно, что воз-
действие на образцы привело к серьезному нару-
шению целостности и уничтожению компонентов 
биопленочного матрикса. Или, в случае “пещерно-
го молочка”, имевшего состояние геля, биоплен-
ка могла изначально испытывать слишком слабую 
адгезию к поверхности, которая нарушалась при 
любом механическом воздействии и прекращала 
влиять на смачиваемость после подготовки образ-
ца к измерениям КУ. Приведенные случаи несогла-
сия оценок нуждаются в целенаправленном и бо-
лее тщательном изучении образцов со свойствами, 
аналогичными описанным – например, биоматов.

В то  же время в подавляющем большинстве 
случаев наблюдалось совпадение оценок наличия 
следов биопленок, данных экспертами-людьми и 
обученной нейронной сетью. Этот факт говорит о 
принципиальной возможности МО на уже имею-
щихся данных о свойствах поверхности почв, гор-
ных пород и других материалов, а наблюдаемые 
сложности классификации помогают конкретизи-
ровать аспекты будущих исследований.

ЗАКЛЮЧЕНИЕ

Предложен подход к обучению и проведено 
пилотное обучение 6 классификаторов для рас-
познавания следов деятельности биопленок на 
поверхностях, которые могут свидетельствовать о 
развитии почвоподобных тел внутри и на поверх-
ности грунтов разного происхождения. Разрабаты-
ваемый подход опирается на легко определяемые 
признаки. Обосновано предположение о том, что 
неоднородность смачиваемости поверхности гео-
логических объектов служит важным индикатором 
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Рис. 4. Кривая ROC для нейросети – классификато-
ра образцов на наличие устойчивых следов биопле-
нок с оптимальными характеристиками. 

Таблица 5. Представленность признаков поверхности в тестовой базе данных в случаях несогласия классифи-
каций и в общем числе образцов (расшифровка обозначений в табл. 2)

Признак 
поверхности

Доля случаев наличия признака поверхности (значение признака = 1), %

при несогласии классификаций между 
экспертом-человеком и обученными  

алгоритмами

в общем числе образцов тестовой  
базы данных

“следы” 82 67

“дисперс” 77 54

“CO3_цем” 77 45

“Al” 64 45

“Si_цем” 27 43
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следов микробной деятельности. В процесс обуче-
ния классификаторов вошли экспертные оценки 
наличия следов биопленки, 8 характеристик стати-
стического распределения контактного угла смачи-
вания и 9 обобщающих категориальных признаков 
геометрии, минерального состава, состояния орга-
нического вещества поверхности для таких объек-
тов, как почвы, материнские породы, породообра-
зующие минералы, сопутствующие компоненты 
почвообразования, ксенобиотики. Несмотря на 
фрагментарность входных данных, удалось достичь 
хорошей обобщающей способности классифика-
торов, обученных распознаванию следов микроб-
ной деятельности на твердых поверхностях, сле-
дующих типов: нейронная сеть со 125 нейронами, 
дерево решений и случайный лес. Эти классифи-
каторы демонстрировали правильность классифи-
кации тестовых данных на уровне 0.72–0.75 и ROC 
AUC 0.71–0.80. Сформированы ограничения для 
моделей на современном этапе: все признаки по-
верхности, кроме смачиваемости, можно выразить 
как бинарные, исследуемый материал не разруша-
ется под действием воды, обнаруживаемые следы 
биопленки устойчивы во времени к смыву водой и 
слабым механическим воздействиям. Разнообразие 
образцов, на которых обучались модели, достаточ-
но невелико, поэтому есть необходимость в про-
должении их обучения для повышения качества 
классификации. Наиболее перспективна в пла-
не прогресса обучения модель нейронной сети со 
случайно отключаемыми нейронами. Определено, 
что сбор новых данных в целях продолжения обу-
чения классификатора должен быть акцентирован 
на дисперсных карбонатных образцах в различных 
вариантах химической, физической и биологиче-
ской обработки. В рамках развития подхода к диа
гностике почвоподобных тел рациональной пред-
ставляется замена бинарного разбиения присут-
ствия/отсутствия следов микробной деятельности 
на несколько категорий, соответствующих типам 
следов биопленок на поверхности, в зависимости 
от стадии зрелости, функционального состава и 
условий жизнедеятельности. Таким образом, дан-
ный подход можно использовать для уточнения ме-
ханизмов почвообразования, биогеохимических и 
биогеотехнологических процессов в грунтах раз-
личного происхождения, в том числе терраформи-
рования.
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Application of Machine Learning Algorithms to Classify 
Soil Components with Different Hydrophilicity
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The capabilities of the pilot model classifier trained to recognize microbial activity traces on solid 
surfaces for studying soils and soil-like bodies have been preliminarily assessed. A  database of 
500 samples described by the authors and in open sources from 1988 to the present was collected for 
machine learning; among them, 59 samples represented soil horizons, 146 parent rocks and soil-like 
bodies, as well as rock-forming minerals, accompanying components of soil formation, xenobiotics 
common in technogenically transformed landscapes of the world. The samples were envolved in the 
database as options of dispersion, coverage with biofilms and films of other nature, chemical and 
physical treatment. The array of sample features significant for machine learning included quantiles 
of the wetting contact angle distribution and generalizing categorical indicators of surface geometry, 
mineral composition, and state of organic matter. The classification target function was the presence of 
microbial activity stable traces on a solid surface. Missing data were reconstructed using Monte Carlo 
procedure and bootstrapping. As a result of numerical experiments on optimizing the machine learning 
a balanced training dataset containing 1233 pseudo-sample elements was obtained. Six classifier models 
with parameter variations were trained and evaluated. The most productive classifier, a five-layer neural 
network with randomly dropout neurons, demonstrated a prediction accuracy of 0.74 and an ROC 
AUC of 0.80 on the test sample, which is higher than that of simpler and faster classifiers (accuracy 
and ROC AUC of 0.70). Based on the disagreement between the classifications of a human expert 
and trained algorithm common feature of samples that are difficult for machine classification were 
established: with traces of life activity, carbonate, dispersed, which allows one to determine the direction 
of collecting information to improve the performance of the classifier. The development of an algorithm 
for recognizing traces of microbial activity is useful for clarifying the mechanisms of biogeochemical 
and biogeotechnological processes in soils of various origins, including soil formation and terraforming.

Keywords: biofilms, wetting contact angle, classification algorithms, neural network, selection of 
hyperparameters


