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Обобщена информация об изменении свойств постагрогенных почв с фокусом на состав ор-
ганического вещества в ходе восстановления естественной растительности. В пределах одной 
ландшафтной зоны от хроносерий распахиваемого горизонта на наиболее бедных субстратах 
к более богатым снижается контрастность изменения кислотности, содержания и запасов поч-
венного органического вещества, обогащенность гумуса N. Этот тренд проявляется и в ряду 
постагрогенных почв: песчаные и супесчаные тайги и подтайги – суглинистые тайги и подтайги – 
суглинистые лесостепи и степи. В старопахотном горизонте при естественном восстановлении 
растительности величина рН и содержание подвижного K снижается в (под)тайге и остается 
неизменной в (лесо)степи. Содержание подвижного Р и обменных Ca и Mg слабоконтрастно 
уменьшается в песчаных почвах (под)тайги и является консервативным показателем в сугли-
нистых почвах (под)тайги и (лесо)степи. В песчаных почвах лесных биомов умеренного пояса 
содержание почвенного органического вещества и общего N по-разному меняется в ходе поста-
грогенной сукцессии. В суглинистых почвах лесных и степных биомов их содержание повыша-
ется или существенным образом не меняется в ходе естественного восстановления раститель-
ности. Несиликатные соединения переходных металлов и подвижные соединения кальция, а 
также активный кислород, продуцируемый почвенными микроорганизмами, играют важную, но 
не до конца понятную роль в стабилизации и разрушении почвенного органического вещества. 
В контексте постагрогенных реградационных изменений почв пока выполнены лишь пилотные 
оценки трансформации состава почвенного органического вещества.
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ВВЕДЕНИЕ

Почвы как крупнейший наземный резервуар 
углерода – важнейший буфер по смягчению гло-
бальных изменений климата  [160]. Содержание 
почвенного органического вещества (ПОВ) и его 
фракций [195, 200, 232] характеризует здоровье и 
потенциал плодородия экосистемы [81, 136], отра-
жает степень ее нарушенности и скорость восста-
новления [166, 248]. При этом само ПОВ чувстви-
тельно к изменению среды [137]. Его устойчивость 
оценивают по среднему времени пребывания угле-
рода в почве, выделяя пулы по периоду оборота от 
десятков до тысяч лет [82, 157, 175].

В современном глобальном масштабе вклад 
смены землепользования в изменение запасов 
ПОВ больше, чем изменения климата и концентра-
ции CO2 в атмосфере [198] и может давать до 20% 
общих антропогенных выбросов CO2 [183], т.е. яв-
ляется существенным фактором эмиссии парнико-
вых газов [78]. Особенно значительно воздействие 
сельского хозяйства [154, 244]. Влияние сельского 
хозяйства на запасы ПОВ прослеживалось даже в 
100-летних лесах Бельгии [228], возникших на ме-
сте заброшенных угодий. Комплексное исследо-
вание механизмов трансформации состава ПОВ 
заброшенных сельхозземель во взаимосвязи с 
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биоразнообразием является важной задачей [246, 
249], особенно в Нечерноземной зоне Восточ-
но-Европейской равнины, где сосредоточены ос-
новные мировые массивы залежных земель.

Цель обзора – обобщить информацию о факто-
рах реградации и временных изменениях в хими-
ческих свойствах старопахотного горизонта почв 
с фокусом на состав органического вещества при 
естественном восстановлении растительности.

ОСОБЕННОСТИ ПОСТАГРОГЕННЫХ 
ХРОНОРЯДОВ

Хроноряды почв, отражающие естественное по-
стагрогенное восстановление экосистем на месте 
заброшенных пахотных угодий, где после внесения 
удобрений и мелиорантов изменился исходный со-
став органо-минеральных комплексов, можно рас-
сматривать в качестве длительного эксперимента 
по коэволюции гумусовых и минеральных веществ 
пахотного горизонта, растительности и почвен-
ной биоты (табл. S1). Важным вопросом изуче-
ния постагрогенных и любых других хроносерий 
является поиск эталона сравнения (точки отсче-
та) и обоснование прямого сравнения с современ-
ными ненарушенными или условно коренными 
экосистемами  [128]  – так называемая простран-
ственно-временная замена (space-for-time substi-
tution) [201], – так как предполагается отсутствие 
значимых изменений условий почвообразования 
за рассматриваемый период. При этом в подобно-
го рода реконструкциях пока еще не учитывается 
вклад исходной мозаичности свойств почв, наблю-
даемой в старовозрастных лесах [78].

Массово на Европейской территории России 
длительность зарастания заброшенных сельхоз
угодий надежно реконструируется по картографи-
ческим материалам как минимум с конца XVIII в. 
(Планам генерального межевания) или спутнико-
вым снимкам Russia, начиная с 1960-х гг. благодаря 
американской программе “CORONA”. На некото-
рые территории имеется и более ранняя аэрофо-
тосъемка [7]. Исторические (до середины XX в.) 
объемы внесения органических и минеральных 
удобрений на конкретный участок можно лишь 
приблизительно оценить по скудным среднестати-
стическим данным и информации о поголовье до-
машнего скота [92].

Параметры лесовосстановления на заброшен-
ных сельхозземлях за счет региональных и ло-
кальных природных и социально-экономических 
факторов несколько отличаются. На  региональ-
ном уровне сильно влияние социально-экономи-
ческих причин (прежде всего динамики численно-
сти сельского населения) при подчиненной роли 
природно-экологических условий [13, 55]. На Вос-
точно-Европейской равнине вместе с малопро-
дуктивными землями из пашни выводили земли 

хорошего качества, экологический потенциал ко-
торых остался невостребованным по экономиче-
ским, демографическим причинам  [13, 193] или 
ввиду расположения вдали от населенных пунктов, 
либо как изолированных наделов внутри лесов [70]. 
Различие в степени окультуренности заброшенных 
почв может существенным образом сказываться на 
последующих трендах изменения свойств старопа-
хотного горизонта. В Нечерноземье европейской 
части России за 1990–2000 гг. больше всего сель-
хозземель (в среднем 46%, с максимумом до 62% 
в отдельных районах по данным со спутниковых 
снимков Landsat) заброшено в Смоленской обла-
сти [70].

Лесовосстановление на бывших сельхозземлях, 
предполагает сначала накопление углерода за счет 
роста запасов фитомассы и формирования под-
стилки [75, 131], а затем и ПОВ [12, 25, 45, 61] пре-
имущественно за счет увеличения содержания ОВ, 
прочно связанного с минеральной частью [19, 55, 
75, 143, 231]. Скорость закрепления углерода пост
агрогенными экосистемами зависит от возрас-
та залежи, природной зоны, типа использования, 
подстилающих пород и других факторов [37, 50, 59, 
73, 79, 89, 165]. Однако есть сообщения о недосто-
верных изменениях или даже о снижении запасов 
ПОВ при естественном лесовосстановлении [51, 74, 
151, 179, 196, 208, 224]. Такие результаты характер-
ны для почв под хвойной растительностью [153], 
где количество медленно разлагаемого опада уве-
личивается по сравнению с быстро разлагающими-
ся травами и органическими удобрениями на по-
лях [203]. Несмотря на увеличение содержания ОВ 
в верхних слоях лесных почв, общие запасы углеро-
да в них могут сокращаться. В почвах Приморского 
края при общей тенденции к увеличению запасов 
углерода по окончании сельскохозяйственного ис-
пользования только за первый год в слое 0–50 см 
содержание углерода снизилось из-за прекращения 
внесения навоза [122]. Отдельно стоит подчеркнуть, 
что растительность, а не почвы является основным 
депозитарием углерода в постагрогенных экосисте-
мах [76].

ФАКТОРЫ ДИФФЕРЕНЦИАЦИИ 
СВОЙСТВ ПОСТАГРОГЕННЫХ ПОЧВ

Почвенные исследования агрогенных сукцес-
сий зачастую фокусируются на запасах и балан-
се углерода. Имеется существенно меньше работ, 
посвященных временной изменчивости факто-
ров и характеристикам экосистем, определяющих 
наблюдаемые изменения, особенно детальному 
анализу межкомпонентных связей в системе рас-
тения–подстилка–почва–почвенная биота  [54], 
а также трансформационных изменений состава 
ПОВ ранее распахиваемого слоя. Поэтому понима-
ние взаимодействия биотического и абиотического 
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компонентов в агрогенных хронорядах все еще не-
полное. Комплексных работ по оценке постагро-
генной динамики лесных экосистем хвойно-ши-
роколиственной зоны в разных эдафических усло-
виях все еще мало [8, 9, 106, 125, 163, 177], что не 
позволяет в полной мере охарактеризовать экоси-
стемные изменения, наблюдаемые при естествен-
ном лесовосстановлении. По другим ландшафтам 
России и мира аналогичных по комплексности ра-
бот еще меньше. В 20-летнем хроноряду Внутрен-
ней Монголии (Китай) с пустынными и степными 
почвами влагозапасы и содержание ПОВ, надзем-
ная и подземная фитомасса, α-разнообразие выс-
ших растений увеличились, а плотность сложения 
и содержание Nобщ уменьшились. Разнообразие 
почвенных бактерий возросло в аридных почвах, 
оставшись неизменным в степных [249].

Растительность. Состав, содержание, устойчи-
вость и вертикальное распределение ПОВ напря-
мую зависит от растительного сообщества и опа-
да [11, 115, 161, 191]. Например, лесная подстилка 
под елью европейской связывает углерод значи-
тельно быстрее по сравнению с дубовыми насажде-
ниями [236]. В луговых и лесных экосистемах ра-
зительно отличаются механизмы формирования и 
трансформации ПОВ [190, 225], состав, структура 
и свойства которого, как сложной и неоднородной 
смеси компонентов растительного и микробного 
происхождения, зависят от наземной и почвенной 
биоты, климата и человека [194].

В естественных, дикорастущих или нативных 
условиях деревья выше, толще, имеют большую 
биомассу, продуктивность и устойчивость к воз-
действию негативных факторов среды по сравне-
нию с растениями в агроландшафте [197]. Возраст 
древостоя бореальных лесов играет важнейшую 
роль в общем запасе ПОВ и характеристиках лес-
ной подстилки [178, 222]. Относительно агропочв 
в лесных хуже агрохимические свойства и ниже 
содержание элементов питания. От почв молодо-
го леса к средневозрастному соотношение С/N 
увеличивается, что отражает увеличение посту-
пления ОВ и уменьшение скорости его минера-
лизации [27]. Подстилки под дубовыми и еловы-
ми лесами начинают накапливать углерод только в 
лесах старше 8 лет [235]. Концентрация углерода в 
верхних 5 см почвы прямо пропорциональна воз-
расту насаждения [229]. Состав лесной подстилки 
и большое количество корней в поверхностных 
горизонтах приводят к изменению свойств почвы, 
особенно pH, содержания углерода и биохимиче-
ской активности [44, 117].

В ходе постагрогенной сукцессии меняется ка-
чественный и количественный состав растительно-
го опада [7, 39, 86]: при смене луговой раститель-
ности лесной преимущественно подземный опад 
тонких корней замещается более грубым надзем-
ным с меньшей зольностью и содержанием Ca и 

Mg [10]. Кроме того, в Нечерноземье этот процесс 
сопровождается увеличением доли опада древес-
ных видов, относимых к гумидокатным (по  [3]) 
растениям, более склонным к извлечению из поч
вы катионогенных элементов, и снижается доля 
ариданитных, специализирующихся на поглоще-
нии элементов, мигрирующих в анионной форме, 
так как среди травянистых растений (особенно 
сорных и рудеральных на начальных стадиях сук-
цессии) весом вклад представителей Амарантовых 
(в том числе из подсемейства Маревых) и полыней. 
От типа растительной ассоциации зависит состав 
поступающего в почву лигнина и, соответственно, 
ароматической компоненты ПОВ: в хвойных лесах 
доминируют ванилиновые фенолы, в почвах ли-
ственных лесов близка доля ванилинов и сиринги-
лов, в степях преобладают феруловые фенолы, а в 
луговых сообществах – циннамиловые структуры. 
Структура гуминовых кислот напрямую зависит от 
филогенетического происхождения лигнина [39].

В постагрогенных почвах Центральной Поль-
ши под березняками самые высокие концентра-
ции щелочных и щелочноземельных металлов (Na, 
K, Ca и Mg) наблюдались в молодых насаждениях. 
С  увеличением возраста березняков содержание 
Cu, Zn, Fe, Pb, Ni и Cr увеличивалось, вероятно, 
за счет накопления этих катионогенных элементов 
в надземной и подземной биомассе [148]. Анализ 
филогенетического и функционального разноо-
бразия растительности в контексте накопления 
целевых групп веществ успешно применяется для 
поиска растений-гипераккумуляторов тяжелых ме-
таллов и металлоидов (ТММ) [206], а также выяв-
ления более и менее успешных клад при измене-
нии условий среды в ходе первичных [171] и вто-
ричных [215] сукцессий. Однако в контексте связей 
состава растительности и меняющегося ПОВ такие 
работы крайне немногочисленны [39].

Почвенная биота прямо и опосредованно влияет 
на множество процессов, в том числе разложение 
ОВ и циркуляцию питательных элементов. Поч-
венные беспозвоночные преобразуют раститель-
ные остатки в тесной взаимосвязи с микроорга-
низмами. Именно через зоомикробные взаимодей-
ствия растительный опад превращается в ПОВ [17, 
97, 252].

Крупные почвенные сапрофаги, в том числе 
дождевые черви, выделяемые среди других почвен-
ных беспозвоночных как группа “экосистемных 
инженеров” за счет высокой преобразующей сре-
ду деятельности [182], измельчают, перемешивают, 
перемещают и затем переваривают растительный 
опад совместно с микроорганизмами. От  разно-
образия групп почвенной макрофауны зависит 
функциональное состояние микробного сообще-
ства [152, 241]. Физиологическая активность ми-
кроорганизмов значительно усиливается после 
прохождения через кишечный тракт дождевых 
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червей – группы сапрофагов, доминирующей по 
биомассе в залежных почвах [17, 92].

Почвенная макрофауна. В ходе постагрогенной 
сукцессии кардинально меняется набор групп поч-
венной макрофауны в связи с постоянным укруп-
нением растительного опада и прекращением 
вспашки. На  начальных этапах в залежных зем-
лях среди дождевых червей доминируют эндогей-
ные виды  [20, 202]. Формирование устойчивого 
горизонта подстилки за счет опада древесной, ку-
старниковой и травянистой растительности благо-
приятствует эпигейной (подстилочной) и эпи-эн-
догейной (почвенно-подстилочной) группам са-
профагов [21, 92], прекращение турбации почвы 
при распашке – восстановлению норных червей, 
обитающих в многолетних ходах  [21] и значимо 
влияющих в том числе на микробиом почвы [88]. 
В постагрогенных хронорядах восстановления со-
сняков, ельников и хвойно-широколиственных ле-
сов Смоленского Поозерья контрастность измене-
ний состава почвенной макрофауны уменьшалась 
от песчаных к супесчаным альфегумусовым почвам 
(Arenosols и Podzols) и суглинистым дерново-под-
золистым (Retisols) за счет различий в контраст-
ности смены условий среды в почвах с меньшей 
и большей буферной способностью соответствен-
но  [92, 106] (https://rscf.ru/project/21-74-20171/). 
Это вписывается в концепцию [55] о существова-
нии на Восточно-Европейской равнине всего двух 
хроносерий постагрогенных лесных ландшафтов – 
еловой на легких породах и дубовой на более тя-
желых.

Дождевые черви выступают в качестве предик-
тора содержания C и N за счет гумификации и 
биотурбации [54], так как потребляют ОВ с широ-
ким соотношением C/N, преобразуя его в ОВ с уз-
ким C/N [180], вносят вклад в почвенное дыхание, 
усиливая гумификацию и снижая минерализа-
цию [185], что создает “углеродные ловушки” [253]. 
Органическое вещество микроагрегатов, оформ-
ленных в водоустойчивые копрогенные макроа-
грегаты, защищено от минерализации микробио-
той и может составлять до 22% общего пула угле-
рода [120]. Исключение дождевых червей снижает 
накопление ПОВ в верхнем 0–40 см слое почвы до 
75%, что связано с уменьшением доли копроген-
ных агрегатов [121].

Почвенная микробиота, выполняющая системо-
образующие функции в преобразовании ОВ и сти-
мулирующая рост и защитную роль растений [112, 
113, 132, 214, 233], – очень чувствительный инди-
катор состояния экосистемы [230]. Традиционно 
основным источником ПОВ считают опад расти-
тельности и ее корневые выделения [184]. Однако 
недавние исследования указывают на заметный 
вклад микроорганизмов, использующих раститель-
ный опад для синтеза собственной биомассы, ко-
торая после их отмирания накапливается [123, 242], 

давая от 10% ОВ в криогенных почвах до 70% в поч
вах умеренных широт [124, 134, 188] и даже более 
в супрагляциальных системах [60] с высокой вари-
абельностью вклада прокариотической и грибной 
компоненты [65, 66]. Доля микробного ОВ зависит 
от скорости минерализации растительных остатков, 
степени увлажнения, минерального состава почвы 
и содержания (гидр)оксидов металлов [205, 243, 240, 
255]. Высокое содержание углерода, ограничение 
количества питательных веществ и значительная 
доля медленно разлагаемых целлюлозы и лигни-
на – важные факторы накопления мортмассы при 
ингибировании микробной активности [245].

Количество микробного углерода отражает 
трансформацию и деградацию почв [218] и весьма 
чувствительно к смене растительности [119]. Одна-
ко состав почвенного микробиома и его метабо-
лические возможности ранее не рассматривали в 
контексте синтеза и разрушения конкретных групп 
ОВ старопахотного горизонта. Почвенно-метаге-
номный анализ чаще используют для выявления 
семейств-маркеров и более крупных таксонов бак-
терий и архей, индицирующих внесение удобре-
ний, известкование, иных особенностей залежных 
земель [63, 109, 140, 149, 162, 221, 238], интеграль-
ной характеристики постагрогенной трансформа-
ции микробиома [110, 254].

В лесных экосистемах состав почвенного ми-
кробоценоза зависит от породного состава древо-
стоя и содержания физической глины [211]. Даже 
при традиционной и органической системах земле-
делия относительно близлежащих условно корен-
ных лесов уменьшается численность почвенных 
архей. При  выращивании зерновых увеличива-
ется количество Proteobacteria (преимуществен-
но представители Pseudomonas), в то время как 
Acidobacteria обнаруживают исключительно в лес-
ных почвах [199]. Фиксация N2 почвенными ми-
кроорганизмами снижается при систематическом 
механическом воздействии, а фотосинтез и фикса-
ция углерода увеличиваются при увлажнении [228].

На поздних стадиях лесовосстановления кислые 
органические горизонты почв хвойных лесов бла-
гоприятствуют активности и обилию почвенных 
грибов, участвующих в минерализации опада [133]. 
Открытие широкой распространенности микроб-
ного продуцирования супероксида (O2* – слабый 
окислитель) в почвах [139] изменило представление 
о метаболических возможностях микробиоты. Гри-
бы [130, 247] и бактерии (особенно представители 
Symbiobacterium, Geobacter, Azospirillum) способ-
ны продуцировать супероксид и другие радикалы, 
которые после взаимодействия с минералами Fe 
производят высокоактивные окисляющие гидро
ксильные радикалы, запускающие in situ фенто-
ноподобные реакции  [142, 247] и образование 
неселективных, сильно окисляющих гидроксиль-
ных радикалов, меняющих круговорот почвенного 
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углерода [169, 247, 141]. Добавление растительных 
остатков может дополнительно усилить небиологи-
ческий катализ и стимулировать эмиссию парни-
ковых газов [142]. Следовательно, трансформация 
микробиома почвы и продуцируемый им активный 
O может быть важным фактором, влияющим на 
цикл углерода [155, 237]. Однако пока отсутствуют 
детальные исследования связи между (минераль-
ным и биологическим) катализом и круговоротом 
углерода в почве.

Свойства почв. В умеренном поясе увлажнение 
является важным фактором, регулирующим нако-
пление ПОВ [77, 117] через влияние на состав дре-
востоя и формирующихся растительных остатков: 
микробные сообщества лиственного опада актив-
нее относительно хвойного  [156, 234]. Замедле-
ние деструкции в заболоченных позициях повы-
шает содержание стабильных трудноокисляемых 
форм и всего ОВ [146]. На примере республики 
Карелии показано, что неучет повышенного на-
копления ПОВ в органогенных горизонтах полу-
гидроморфных почв занижает запасы углерода на 
10–40% [102]. Гумификация лесной подстилки – 
важнейшее звено в круговороте углерода в лесных 
и заболоченных экосистемах [127, 186]. Она тесно 
связана не только с составом опада, но и микро-
биологической активностью почвы, гранулометри-
ческим составом, кислотностью, катионообмен-
ной способностью, содержанием ОВ и элементов 
питания [174].

По завершении антропогенных вмешательств 
химический состав постагрогенных почв меняет-
ся в тесной связи с сукцессионными изменениями 
консорциума почвенной биоты и наземной расти-
тельности. Так, после прекращения чрезмерного 
внесения извести и ухудшения дренажа кислород-
ные условия с нейтральной или карбонатной сре-
дой могут смениться на кислые глеевые, т.е. поме-
няется класс геохимического ландшафта с Ca2+ на 
Са2+-H+-класс или H+-Fe2+-класс. Такая трансфор-
мация условий среды, несомненно, сказывается и 
на устойчивости ПОВ, так как меняется не только 
кислотность, но и состав катионов почвенно-по-
глощающего комплекса. Высокая кислотность 
вместе с низким содержанием N в детритной (гру-
бой) фракции гумуса [223], накапливающейся в ос-
новном в верхней части старопахотного горизон-
та [23, 24], воздействует на деятельность микроор-
ганизмов, усиливая минерализацию ОВ, несмотря 
на его большее поступление с опадом [111, 167].

На основе анализа почв с различным соотноше-
нием микроэлементов показана высокая роль Ca, 
Mg и Mn в регуляции структуры и функциониро-
вании почвенного микробоценоза [220]. Ризосфер-
ные микроорганизмы могут существенно повысить 
биодоступность элементов. Почвенные минера-
лы и многовалентные оксиды металлов защища-
ют ПОВ от микробного разложения посредством 

адсорбции, соосаждения и связывания [168, 213, 
250]. В  гумидных ландшафтах содержание ПОВ, 
связанного с минералами Fe, может достигать 70%, 
не превышая 6% в аридных почвах [173]. Углерод 
лигнина может преимущественно связываться с 
Fe  [139, 158]. Следовательно (гидр)оксиды этого 
металла, типоморфного для гумидных ландшафтов 
Нечерноземья, играют важную роль в ограничении 
разложения растительного опада или лигнина в 
почве [39]. Помимо защиты посредством образо-
вания комплексов [94], (гидр)оксиды Fe во влаж-
ных тропических и субтропических лесных почвах 
могут катализировать начало фентоноподобных 
реакций разложения ПОВ [126, 142, 155]. В отли-
чие от поливалентных Fe и Mn, Ca физически и 
химически защищает ПОВ [209, 217, 239]. Однако 
повышенная активность Ca способна стимулиро-
вать рост грибов, разлагающих лигнин, т.е. сни-
жать запасы ПОВ [189].

Так как растения поглощают элементы только 
из почвенных растворов [116, 212], то в условиях 
промывного водного режима возвращение элемен-
тов на поверхность почв с опадом возможно лишь 
при существенном количестве биодоступных со-
единений [114, 227], поэтому в контексте ненару-
шенных экосистем современные исследования 
поведения ТММ все чаще фокусируются на под-
вижных соединениях ТММ [147, 216]. Однако ра-
диальную и латеральную дифференциацию ТММ в 
почвах интерпретируют на основе условий мигра-
ции и базовых химических характеристик: кислот-
ности, содержания обменных оснований, гумуса и 
разнообразных гранулометрических фракций, ми-
неральных фаз-носителей, а сами ТММ редко рас-
сматривают в качестве предикторов протекающих 
в почве процессов трансформации ОВ.

ПОСТАГРОГЕННЫЕ ИЗМЕНЕНИЯ 
В СВОЙСТВАХ ПОЧВ

В современной классификации почв России [68, 
105] дано определение реградированного и пост
агрогенного признака, но неясно, как рассматри-
вать постагрогенную почвенную толщу с новоо-
бразованной системой горизонтов [101]. При этом 
стоит отметить, что актуальные российские под-
ходы в сравнении с другими международными и 
национальными классификациями в наиболее 
полной мере позволяют принять во внимание на-
блюдаемые реградационные изменения в поста-
грогенных почвах [92].

Поскольку 2/3 залежных земель России рас-
положено в лесной зоне  [55, 64], основные ис-
следования постагрогенных изменений свойств 
почв связаны с нечерноземными регионами 
(табл. 1, S1). В южной тайге изучено много поста-
грогенных экосистем методом хронорядов. В сред-
ней тайге количество подобных работ меньше за 
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счет преимущественного исследования почв по-
слерубочных экосистем [13, 29, 52, 143, 144]. В ре-
зультате в контексте постагрогенной реградации 
наиболее изучены (дерново-)подзолистые почвы 
европейской части России при единичных рабо-
тах в азиатской части страны. Несколько меньше 
исследованы постагрогенные черноземы. Зато по 
ним шире географический охват. Существенно 
меньше подобного рода работ по почвам в зоне 
распространения широколиственных лесов [8, 9, 
22, 34, 35, 46, 55, 67, 91]. Единичны исследования 
постагрогенных почв в тундре [40, 41, 72, 109], ко-
торые по понятным причинам реже вовлекались в 
сельскохозяйственный оборот. Отсутствуют дан-
ные по заброшенным почвам вулканических ре-
гионов Камчатки и Курильских островов. Очень 
слабо исследованы постагрогенные хроносерии 
гидроморфных [57, 58, 192] и полугидроморфных 
почв [55, 40, 71, 122], что не позволяет в должной 
мере оценить вклад степени увлажнения в скорость 
реградационных изменений почв. При этом в абсо-
лютном большинстве работ отсутствует истинная 
биологическая или географическая повторность 
(по [43, 80, 87, 159]) для одной и той же стадии, т.е. 
опробование компонентов экосистем на разных 
площадках, разнесенных между собой на расстоя-
ние как минимум в сотни метров и находящихся 
в разных геоботанических выделах. Кроме того, в 
фокусе один или, в лучшем случае, два компонен-
та экосистемы. Чаще всего объектом исследований 
является почва и растительность, а почвенному 
микробиому (археям, бактериям и грибам), микро-, 
мезо- и макрофауне не уделяют достаточно внима-
ния. Отдельно стоит отметить исследование 11 хро-
носерий на 9 ключевых участках (постагрогенные 
экосистемы возрастом до 200 лет от средней тайги 
до полупустынь на Восточно-Европейской равни-
не) [55], позволившее обозначить в лесных ланд-
шафтах два типа сукцессии: еловую, разделяемую 
на два подтипа в соответствии с гранулометриче-
ским составом пород, и дубовую. В целом времен-
ной интервал, охватываемый хронорядами, снижа-
ется в несколько раз от почв гумидных ландшафтов 
к аридным.

Помимо содержания и запасов ПОВ, в поста-
грогенных хронорядах почв подробно изучено 
изменение агрохимических показателей: кислот-
ности, содержания обменных оснований, элемен-
тов питания (N, P, K) и форм Fe. Считается, что 
в пределах одной ландшафтной зоны от хроносе-
рий с наиболее бедным субстратом к более бога-
тым снижается степень изменения кислотности, 
содержания и запасов ПОВ, его обогащенность 
N [55, 91], а наиболее контрастные изменения про-
являются в самой верхней части некогда распахи-
ваемого горизонта. В ряду постагрогенных песча-
ных и супесчаных почв тайги и подтайги – сугли-
нистых почв тайги и подтайги – суглинистых почв 

лесостепи и степи этот тренд четко прослежива-
ется (табл. 2). В хронорядах песчаных почв тайги 
и подтайги России значения рН снижаются при 
естественном лесовосстановлении. В суглинистых 
почвах указанного региона данная закономерность 
прослеживается слабее, а в лесостепных и степных 
почвах величина рН оказывается достаточно кон-
сервативным показателем. Распределение содержа-
ния ПОВ и N схоже в постагрогенных хронорядах: 
в песчаных почвах тайги и подтайги в равной мере 
отмечают как уменьшение, так и увеличение со-
держания обоих элементов. В суглинистых почвах 
этого региона, а также в темногумусовом горизонте 
почв лесостепи и степи чаще отмечают повышение 
содержания или отсутствие значимых изменений в 
ходе постагрогенной реградации. Вероятно, за счет 
прекращения внесения минеральных удобрений и 
активного выноса в условиях промывного водно-
го режима содержание подвижного К, как прави-
ло, снижается в песчаных и суглинистых почвах 
тайги и подтайги. По почвам с темногумусовым 
горизонтом данных пока недостаточно. Снижение 
содержания подвижного P и обменных оснований 
выражено слабее даже в песчаных почвах. В суг-
линистых почвах чаще обнаруживается отсутствие 
изменений.

ВРЕМЕННАЯ ДИНАМИКА СОСТАВА 
ОРГАНИЧЕСКОГО ВЕЩЕСТВА В ХОДЕ 

ПОСТАГРОГЕННОЙ РЕГРАДАЦИИ 
СТАРОПАХОТНОГО ГОРИЗОНТА

Прогресс в методах анализа ОВ дает больше 
возможностей и для исследования ПОВ [39, 98], 
что позволило углубить представление о транс-
формации состава ПОВ при смене вариантов зем-
лепользования. В контексте постагрогенных регра-
дационных изменений почв пока выполнены лишь 
пилотные оценки трансформации состава ОВ.

Агрогумусовый горизонт почв Нечерноземья. 
В ряду постагрогенных почв Коми (до 85 лет в за-
лежном состоянии) ход распределения экстраги-
руемого ОВ совпадал с трендом, характерным для 
общего углерода (Собщ): содержание гидрофильных 
соединений ПОВ выше в почвах старовозрастных 
лесов финальных стадий восстановления. В  по-
чвах свежих залежей минимально содержание C и 
N в тяжелой денситметрической фракции с плот-
ностью >1.6 г/см3 и в легкой фракции окклюдиро-
ванного ОВ [28, 145]. В молекулярной структуре 
гуминовых кислот пахотного горизонта разновоз-
растных (до 90 лет) залежей Новгородской области 
уменьшалась ароматичность и увеличивалась али-
фатичность [38].

В агродерново-подзолистой реградированной 
почве Московской области (22  года в залежном 
состоянии) достоверно увеличились содержание 
и запасы Собщ по сравнению с пахотным аналогом 
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Таблица 2. Тренды изменений свойств верхней части старопахотного горизонта в хронорядах длительностью 
от 40 лет

Горизонт Регион рН Сорг Nобщ Pav Kav Ме Длина 
хроноряда, лет Источник

Yп Архангельская область ➘ ➘ ➘ ➘ ↕ ↕ 140 [55]
Костромская область ➘ ➚ ➚ 100 [8, 9, 91]
Костромская область ➘ ➚ ➚ ↕ ↕ 100 [47, 89, 90, 91]
Новгородская область ➘ ➚ ↕ ➘ ? ➘ 170 [55, 164]
Республика Коми ↕ ↕ ➚ ↕ 85 [28, 30, 145]
Смоленская область ➘ ➘ ➘ ➘ ➘ ➘ 100 [92, 106, (а)]
Смоленская область ➚ ➘ ➘ ➘ ➘ 100 (а)
Смоленская область ➘ 66 [32]

Yс Белгородская область ➘ ↕ ↕ 40 [91]
Калужская область ➘? ↕ ↕ ↕ ➘? 50 [7]
Кировская область ➘ ↕ ↕ ➘ ➘ ➘ 65 [55]
Московская область ↕ ➚ ↕ 200 [107]
Московская область ? ➚ 250–300 [84]

Московская область ↕ ➚ ➚ 65 [8, 9, 89, 91]
Провинция Дзянсу, Китай ↕ ➚ ➚ ➚ 65 [137]
Псковская область ↕ ↕ ➘ ➘ ↕ 130 [55]
Республика Бурятия ↕ ↕ ↕ 150 [103]
Смоленская область ➘ ➚ ↕ ➘ ↕ ↕ 400 (а)
Смоленская область ↕ 66 [32]
Тверская область ➚ ➚ ➚ [5]

Yс Удмуртия ➘ ➚ ➘ ➚ [48]
Uc Белгородская область ➚ ➚ ➚ [67]

Белгородская область ↕ ↕ ↕ ↕ ↕ 77 [56]
Белгородская область ↕ ↕ ↕ ➚ ↕ 75 [56]
Иркутская область ↕ ➚ ➚ 110 [34]
Курская область ↕ ↕ ↕ ↕ ➘? 58 [55]
Курская область ↕ ↕ 50 [15]
Курская область ➚ ➚ 60 [67]
Орловская область ↕ ➚? ➘ ↕ ↕ 100 [55]
Приморский край ➚ 60 [71, 122]
Ростовская область ↕ ➚ ➚ 81 [8, 9, 53]
Ростовская область ➘ ↕ 83 [1, 62]

н.д. Венгрия ➚ ➚ ↘ 200 [226]
Jп Астраханская область ➘ ➚ ➚ ↕ ↕ ↕ 50 [55]

Примечание. Восстанавливающийся гумусовый горизонт: Y – серогумусовый, U – темногумусовый, J – светлогумусовый, 
п – песчаный и супесчаный, с – суглинистый. н.д. – нет данных. ↕ – без монотонных трендов, ➚ – возрастает, ➘ – 
снижается, ?  – возможно отсутствие значимых трендов, так как данных недостаточно. (а)  – https://rscf.ru/proj-
ect/21-74-20171/.
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преимущественно за счет легкоразлагаемых ОВ. 
Относительно пахотной, залежная почва содер-
жала больше агрономически ценных (0.25–10 мм), 
водоустойчивых и крупных (>0.05 мм) агрегатов, 
водоэкстрагируемого ОВ из микроагрегатов, что 
обусловлено повышенным количеством поступа-
ющих растительных остатков и замедлением их ми-
нерализации по сравнению с пахотной почвой [14]. 
Сходные результаты (повышение содержания сво-
бодной и агрегированной фракции органиче-
ских веществ) получены при сравнении четырех 
пар агродерново-подзолистых почв под пашней 
и лесом на Звенигородской биостанции и центре 

“Чашниково” МГУ им. М.В. Ломоносова, а также 
Зеленоградском стационаре Почвенного института 
им. В.В. Докучаева и биогеоценологической стан-
ции “Малинки” Института проблем экологии и 
эволюции им. А.Н. Северцова РАН [6].

В илистой фракции диаметром <1 мкм и мел-
коземе, не разделенном на гранулометрические 
фракции, дерново-подзолистых почв Централь-
но-Лесного заповедника увеличивалось содержа-
ние ПОВ в ходе постагрогенной сукцессии. В этом 
хроноряду длительностью 100 лет увеличилась сте-
пень пептизации коллоидных систем и уменьшил-
ся средний диаметр органо-глинистых комплек-
сов [5].

Агротемногумусовый горизонт почв черноземных 
регионов. Реградация черноземов и темно-серых 
почв Белгородской и Курской областей сопрово-
ждалась увеличением содержания С и N во всех 
денситметрических фракциях. Наиболее разитель-
ные постагрогенные изменения в содержании ПОВ 
и N, а также углерода денситметрических фракций 
проявились в верхнем 0–5 см слое гумусового го-
ризонта. В ходе постагрогенной сукцессии в почвах 
обоих хронорядов возросла доля свободной фрак-
ции ОВ с плотностью <1.6 г/см3 при постоянстве 
содержания окклюдированной фракции с плот-
ностью <2.0 г/см3 [67]. Повышение доли близкой 
(<1.8 г/см3) денситметрической фракции ОВ отме-
чено и в постагрогенных степных почвах заповед-
ника “Аркаим” [69]. На Лёссовом плато Китая под 
разновозрастными (до 42 лет) лесами в ходе вос-
становления леса из акации (Robinia pseudoacacia) и 
плосковеточника (Platycladus orientalis) в песчаной 
и пылеватой фракции гумусового горизонта Calcic 
Cambisols увеличилось содержание ОВ, извлекае-
мого Na4P2O7 [150, 187].

Высокое содержание (3–4% от массы почвы) 
углерода фитолитовой фракции органического ве-
щества с плотностью 1.8–2.0 г/см3 является отли-
чительной чертой черноземов луговых степей [94] 
и целинных почв под осоково-злаковым разнотра-
вьем. Связано это с обильным опадом злаков и 
подтверждается данными микроскопии. В распа-
хиваемых выщелоченных и обыкновенных черно-
земах доля фитолитовой фракции органического 

вещества <1.5% [42]. Снижение поступления рас-
тительных остатков и изменение их видового со-
става при распашке способствует выносу N легко-
разлагаемых соединений органических остатков и 
гумусовых веществ илистой фракции [94].

От распахиваемых черноземов к залежным и 
степным возросло содержание метилфурфурола 
и N-содержащих ароматических соединений при 
отсутствии различий вклада фурфурола, ацикли-
ческих и полисахаридных веществ  [99]. В распа-
хиваемых черноземах при деградации ПОВ обед-
нялся состав жирных кислот. Накопление ОВ 
способствовало увеличению разнообразия жир-
ных кислот, что, вероятно, коррелирует с α-разно
образием произрастающей растительности, кото-
рое снижается в агроценозах за счет доминирова-
ния целевой культуры. По составу жирных кислот 
предложено классифицировать черноземы по пре-
обладающим процессам трансформации ОВ. В ка-
честве биомаркеров перехода типичного чернозема 
в залежное состояние предложено рассматривать 
присутствие эйкозапентаеновой кислоты, содер-
жащейся в микроводорослях, и дигомогаммалино 
левой, синтезируемой грибами рода Mortierella [95].

ЗАКЛЮЧЕНИЕ

Региональные оценки баланса углерода значи-
тельно различаются из-за разнообразных природ-
ных и антропогенных факторов, поэтому важны 
комплексные исследования механизмов минера-
лизации и гумификации ОВ. До сих пор отсутству-
ет глубокое понимание механизмов естественной 
трансформации ОВ в ходе постагрогенной реграда-
ции почв, что существенно затрудняет эффектив-
ную реализацию национальной политики углерод-
ной нейтральности.

В абсолютном большинстве изученных поста-
грогенных хронорядов почв отсутствует истинная 
повторность для одной и той же стадии и изуча-
ется один или, в лучшем случае, два компонента 
экосистемы – почва и растительность. Временной 
интервал, охватываемый хронорядами в классиче-
ских почвенных исследованиях, снижается от почв 
гумидных ландшафтов к аридным с 200–300 лет 
до 80 лет в степных регионах и 50 – в пустынных. 
Почвенно-археологические исследования позво-
ляют расширять данный интервал до тысяч лет. 
Очень слабо изучены постагрогенные хроносерии 
тундры, гидроморфных и полугидроморфных почв, 
что не позволяет в должной мере оценить вклад 
степени увлажнения в скорость реградационных 
изменений почв. Больше работ посвящено почвам 
широколиственных лесов. Наиболее изучена по-
стагрогенная дифференциация черноземов и осо-
бенно – текстурно-дифференцированных почв.

В пределах одной ландшафтной зоны от хроно-
серий песчаных пахотных горизонтов к глинистым 
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снижается контрастность изменения кислотности, 
содержания и запасов ПОВ, обогащенности гуму-
са N. Этот тренд свойственен и ряду постагроген-
ных почв: песчаные и супесчаные тайги и подтай-
ги – суглинистые тайги и подтайги – суглинистые 
почвы лесостепи и степи. В хронорядах песчаных 
почв тайги и подтайги значения величины рН, со-
держание подвижного К, в меньшей мере подвиж-
ного P и обменных оснований снижаются при 
естественном лесовосстановлении, отмечаются 
разнонаправленные тренды изменения содержа-
ния ПОВ и N. В суглинистых почвах этого же реги-
она содержание подвижного К и, как правило, ве-
личина рН снижаются в ходе лесовосстановления, 
содержание ПОВ и N повышается или не меняет-
ся, подвижного P и обменных оснований остается 
неизменным. В лесостепных и степных почвах со-
держание ПОВ и N повышается или не меняется, 
величина рН остается неизменной.
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This review summarizes information about the properties of postagrogenic soils with a focus on the 
composition of soil organic matter (SOM) during the natural self-revegetation. Within one landscape 
zone, from the chronoseries of the plowed horizon with the poorest substrate to the richest, the contrast 
in changes in acidity, content and reserves of SOM, and its enrichment in N decreases. This trend is 
also typical for the series of postagrogenic soils “sandy and sandy loam in (sub)taiga – loamy in (sub)
taiga – loamy in (forest-)steppe.” In the previously plowed horizon, with the natural self-revegetation, 
the pH value and the content of mobile K decreases in the (sub)taiga and remains unchanged in the 
(forest)steppe. The content of mobile P and exchangeable Ca and Mg decreases slightly in the sandy 
soils of the (sub)taiga and is constant in the loamy soils of the (sub)taiga and (forest)steppe. For the 
content of SOM and total N, multidirectional trends were noted in the sandy soils at the (sub)taiga 
and at the loamy soils, an increase or uniform distribution during the self-revegetation in (sub)taiga 
and (forest)steppe. The mobile fractions of transition metals and Ca as well as active forms of O play 
an important but not fully understood role in the stabilization and destruction of SOM. In the context 
of postagrogenic regradative changes in soils, only pilot assessments of the transformation of SOM 
composition have been carried out.

Keywords: carbon cycle, chronosequence, space-for-time substitution, ecological indicators, soil 
microbiome, earthworms, fungi, vegetation
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