- PII
- 10.31857/S0032180X24070055-1
- DOI
- 10.31857/S0032180X24070055
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 7
- Pages
- 983-996
- Abstract
- The chemical structure of pools of organic matter (OM) in the 2–1 mm water-stable macroaggregates, isolated from air-dry aggregates of the same size in arable horizons of non-eroded, eroded and deposited agrochernozems has been studied by solid-state 13C-NMR spectroscopy. An assessment is made of the alteration of their chemical structure in the denudative-accumulative landscape. It was revealed that the overwhelming majority of water-stable macroaggregates in the erosion zone are newly formed due to the dynamic replacement of OM in situ, which is clearly evidenced by the integral indicators of the chemical structure of all pools of OM macroaggregates. Analytical data indicate the predominant transport of newly formed macroaggregates. The destruction of macroaggregates during the transport phase is accompanied by the release of previously physically protected aggregated OM, which undergoes partial mineralization (predominantly its most labile part – hydrolyzable), and its stable part remains little/non-changed. Mineral-associated OM (Сlay and Residue) changes little, maintaining relative freshness, which may be indirect evidence of the transportation of predominantly newly formed macroaggregates from the erosion zone. The greater degree of freshness of free OM of macroaggregates in deposited agrochernozem is due to the predominance in of fresh remains of cultivated vegetation of the accumulative zone, together with those transported from the erosion zone.
- Keywords
- эрозия водоустойчивые агрегаты химическая структура органического вещества CP-MAS 13C-ЯМР-спектроскопия
- Date of publication
- 15.07.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 44
References
- 1. Артемьева З.С. Органо-минеральные профили агрогенно-эрозионно-деградированных типичных черноземов Западной части Центрально-Черноземного района // Агрохимия. 2009. № 3. С. 5–12.
- 2. Артемьева З.С. Органическое вещество и гранулометрическая система почвы М.: ГЕОС, 2010. 240 с.
- 3. Артемьева З.С., Травникова Л.С. Изменение характеристик органического вещества и глинистых минералов серых почв в процессе агропедогенеза // Почвоведение. 2006. № 1. С. 96–107.
- 4. Артемьева З.С., Данченко Н.Н., Кириллова Н.П., Масютенко Н.П., Дубовик Е.В., Кузнецов А.В., Когут Б.М. Изменение компонентного состава органического вещества макро- и микроагрегатов типичного чернозема под воздействием эрозионных процессов // Почвоведение. 2021. № 11. С. 1322–1331. https://doi.org/10.31857/S0032180X21110022
- 5. Артемьева З.С., Зазовская Э.П., Засухина Е.С., Цомаева Е.В. Изотопный состав углерода органического вещества водоустойчивых структурных отдельностей типичного чернозема в контрастных вариантах землепользования // Почвоведение. 2023. № 3. С. 339–352. https://doi.org/10.31857/S0032180X22601098
- 6. Артемьева З.С., Данченко Н.Н., Колягин Ю.Г., Варламов Е.Б., Засухина Е.С., Цомаева Е.В., Когут Б.М. Химическая структура органического вещества агрочерноземов разных позиций на склоне // Почвоведение. 2023. № 6. С. 703–714. https://doi.org/10.31857/S0032180X22601517
- 7. Данченко Н.Н., Артемьева З.С., Колягин Ю.Г., Когут Б.М. Сравнительный анализ гумусовых веществ и органического вещества физических фракций чернозема типичного // Почвоведение. 2022. № 10. С. 1241–1254. https://doi.org/10.31857/S0032180X22100033
- 8. Ермолаев О.П. Пояса эрозии в природно-антропогенных ландшафтах речных бассейнов. Казань: Изд-во Казанского ун-та, 1992. 147 с.
- 9. Классификация и диагностика почв СССР. М.: Колос, 1977. 223 с.
- 10. Когут Б.М., Артемьева З.С., Кириллова Н.П., Яшин М.А., Сошникова Е.И. Компонентный состав органического вещества воздушно-сухих и водоустойчивых макроагрегатов 2–1 мм типичного чернозема в условиях контрастного землепользования // Почвоведение. 2019. № 2. С. 161–170. https://doi.org/10.1134/S0032180X19020084
- 11. Травникова Л.С., Артемьева З.С., Сорокина Н.П. Распределение грануло-денсиметрических фракций в дерново-подзолистых почвах, подверженных плоскостной эрозии // Почвоведение. 2010. № 4. С. 495–504.
- 12. Хан Д.В. Органо-минеральные соединения и структура почвы. М.: Наука, 1969. 141 с.
- 13. Цомаева Е.В., Артемьева З.С., Засухина Е.С., Варламов Е.Б. Несиликатное железо минерально-ассоциированного органического вещества агрочерноземов разной локализации на склоне // Бюл. Почв. ин-та им. В.В. Докучаева. 2023. Вып. 115. С. 54–86. https://doi.org/10.19047/0136-1694-2023-115-54-86
- 14. Чуков С.Н., Лодыгин Е.Д., Абакумов Е.В. Использование 13С ЯМР-спектроскопии в исследовании органического вещества почв (обзор) // Почвоведение. 2018. № 8. С. 952–964. https://doi.org/10.1134/S0032180X18080026
- 15. Amelung W., Flach K.W., Zech W. Neutral and acidic sugars in particle-size fractions as influenced by climate // Soil Sci. Soc. Am. J. 1999. V. 63. P. 865–873. http://doi.org/ 10.2136/sssaj1999.634865x
- 16. Artemyeva Z., Danchenko N., Kolyagin Yu., Kirillova N., Kogut B. Chemical structure of soil organic matter and its role in aggregate formation in Haplic Chernozem under the contrasting land use variants // Catena. 2021. V. 204. P. 105403. https://doi.org/10.1016/j.catena.2021.105403
- 17. Artemyeva Z.S., Danchenko N.N., Zazovskaya E.P. et al. Natural 13C Abundance and Chemical Structure of Organic Matter of Haplic Chernozem under Contrasting Land Uses // Eurasian Soil Sci. 2021. V. 54(6). P. 686–700. http://doi.org/10.1134/S106422932106003X
- 18. Artemyeva Z.S., Danchenko N.N., Kolyagin Yu.G. et al. Chemical Structure of the Organic Matter of Water-Stable Structural Units in Haplic Chernozem under Contrasting Land Uses. P. Solid-State CP-MAS 13C-NMR Spectroscopy // Eurasian Soil Sci. 2022. V. 55(6). P. 734–744. https://doi.org/10.1134/S1064229322060035
- 19. Baldock J.A., Oades J.M., Vassallo A.M., Wilson M.A. Solid-state CP/MAS 13C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose // Aust. J. Soil Res. 1990. V. 28. P. 213–225. http://dx.doi.org/10.1071/SR9900213
- 20. Baldock J.A., Oades J.M., Waters A.G. et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy // Biogeochemistry. 1992. V. 16. P. 1–42. http://doi.org/10.1007/BF02402261
- 21. Berhe A.A., Harden J.W., Torn M.S. et al. Persistence of soil organic matter in eroding против depositional landform positions // J. Geophysical Research – Biogeosciences. 2012. V. 117. P. G02019. https://doi.org/10.1029/2011JG001790
- 22. Campbell R., Porter R. Low temperature scanning electron microscopy of microorganisms in soils // Soil Biol. Biochem. 1982. V. 14. P. 241-245. http://doi.org/16/0038-0717 (82)90033-5
- 23. Chaplot V., Cooper M. Soil aggregate stability to predict organic carbon outputs from soils // Geoderma. 2015. V. 243–244. P. 205–213. http://dx.doi.org/10.1016/j.geoderma.2014.12.013
- 24. Clemente J.S., Simpson A.J., Simpson M.J. Association of specific organic matter compounds in size fractions of soils under different environmental controls // Org. Geochem. 2011. V. 42. P. 1169–1180. https://doi.org/10.1016/j.orggeochem.2011.08.010
- 25. Elliott E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils // Soil Sci. Soc. Am. J. 1986. V. 50. P. 627–633. https://doi.org/10.2136/sssaj1986.03615995005000030017x
- 26. Fernández-Raga M., Palencia C., Keesstra S.D., et al. Splash erosion. P. a review with unanswered questions // Earth-Science Reviews. 2017. V. 171. P. 463–477. https:// doi.org/ 101016/j. earsc irev. 2017. 06.009
- 27. Foster R.C. The Plant Root Environment. In CSIRO. An Australian Viewpoint. London: Academic Press, 1983. P. 673–684.
- 28. Golchin A., Oades J.M., Skjemstad J.O., Clarke P. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMP spectroscopy and scanning electron microscopy // Austr. J. Soil Res. 1994. V. 32. P. 285-309. https://doi.org/10.1071/SR9940285
- 29. Golchin A., Oades J.M., Skjemstad J.O., Clarke P. Structural and dynamic properties of soil organic matter as reflected by 13C natural abundance, pyrolysis mass spectrometry and solid-state 13C NMR spectroscopy in density fractions of an Oxisol under forest and pasture // Aust. J. Soil Res. 1995a. V. 33. P. 59-76. https://doi.org/10.1071/SR9950059
- 30. Golchin A., Baldock J.A., Oades J.M. A model linking organic matter decomposition, chemistry, and aggregate dynamic // Soil Processes and the Carbon Cycle. Boca Raton, 1998. P. 245-266.
- 31. Hatcher P.G., Schnitzer M., Dennis L.W., Maciel G.E. Aromaticity of humic substances in soils // Soil Sci. Soc. Am. J. 1981. V. 45. P. 1089–1094. https://doi.org/10.2136/sssaj1981.03615995004500060016x
- 32. Jakab G., Szabó J., Szalai Z., et al. Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates // Environ. Earth Sci. 2016. V. 75. P. 144. https://doi.org/10.1007/s12665-015-5052-9
- 33. John B., Yamashita T., Ludwig B., Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use // Geoderma. 2005. V. 128. P. 63–79. https://doi.org/10.1016/j.geoderma.2004.12.013
- 34. Kiem R., Kögel-Knabner I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils // Soil Biol. Biochem. 2003. V. 35. P. 101–118. https:// doi.org/ 10. 1016/ S0038-0717(02) 00242-0
- 35. Kölbl A., Kögel-Knabner I. Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state 13C NMR spectroscopy // J. Plant Nutr. Soil Sci. 2004. V. 167. P. 45-53. https://doi.org/10.1002/jpln.200321185
- 36. Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility. P. I. Theory and methodology // Eur. J. Soil Sci. 1996. V. 47. P. 425–437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x
- 37. Legout C., Leguédois S., Le Bissonnais Y., Malam Issa O. Splash distance and size distributions for various soils // Geoderma. 2005. V. 124. P. 279–292. http://doi.org/10. 1016/j. geoderma. 2004. 05. 006
- 38. Lichtfouse E., Chenu C., Baudin F. et al. A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers. P. chemical and isotope evidence // Org. Geochem. 1998. V. 28. P. 411–415. https://doi.org/10.1016/S0146-6380 (98)00005-9
- 39. Oades J.M., Waters A.C. Aggregate Hierarchy in Soils // Aust. J. Soil Res. 1991. V. 29. P. 815–828. http://doi.org/10.1071/SR9910815
- 40. Puget P., Angers D.A., Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils // Soil Biol. Biochem. 1998. V. 31. P. 55–63. https://doi.org/10.1016/S0038-0717 (98)00103-5
- 41. Rumpel C., Eusterhues K., Kögel-Knabner I. Non-cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons of two acid forest soils // Soil Biol. Biochem. 2010. V. 42. P. 379–382. https://doi.org/10.1016/j. soilbio. 2009. 11. 004
- 42. Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kogel-Knabner I., Lehmann J. et al. Persistence of soil organic matter as an ecosystem property // Nature. 2011. V. 478. P. 49–56. https://doi.org/10.1038/nature10386
- 43. Six J., Paustian K., Elliott E.T., Combrink C. Soil structure and soil organic matter. P. I. Distribution of aggregate size classes and aggregate associated carbon // Soil Sci. Soc. Am. J. 2000. V. 64. P. 681–689. https://doi.org/ 10.2136/sssaj2000.642681x
- 44. Six J., Conant R.T., Paul E.A., Paustian K. Stabilization mechanisms of soil organic matter. P. implications for С-saturation of soils // Plant Soil. 2002. V. 241. P. 155–176. https://doi.org/10.1023/A. P. 1016125726789
- 45. Six J., Bossuyt H., DeGryze S., Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics // Soil Tillage Res. 2004. V. 79. P. 7–31. https://doi.org/10.1016/j.still.2004.03.008
- 46. Tisdall J.M., Oades J.M. Organic Matter and Water-Stable Aggregates in Soils // J. Soil Sci. 1982. V. 33. P. 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
- 47. Vaezi A.R., Ahmadi M., Cerdà A. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls // Sci. Total Environ. 2017. V. 583. P. 382-392. https://doi.org/10.1016/j.scitotenv.2017.01.078
- 48. Wattel-Koekkoek E.J.W., van Genuchten P.P.L., Buurman P. et al. Amount and composition of clay-associated soil organic matter in a range of kolinitic and smectitic soil // Geoderma. 2001. V. 99. P. 27–49. https://doi.org/10.1016/S0016-7061 (00)00062-8
- 49. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed., International Union of Soil Sciences (IUSS), Vienna, 2022. 236 p.
- 50. Xu S., Silveira M.L., Ngatia L.W., Normand A.E., Sollenberger L.E., Reddy K.R. Carbon and nitrogen pools in aggregate size fractions as affected by sieving method and land use intensification // Geoderma. 2017. V. 305. P. 70–79. https://dx.doi.org/10.1016/j.geoderma.2017.05.044
- 51. Young I.M., Crawford J.W., Nunan N., Otten W., Spiers A. Chapter 4 Microbial Distribution in Soils // Phys. Scaling. Adv. Agron. 2009. V. 100. P. 81–121. https://doi.org/10.1016/S0065-2113 (08)00604-4